Loading…
Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study
Background: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also intro...
Saved in:
Published in: | Journal of medical Internet research 2021-07, Vol.23 (7), p.e26151 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4151-c8064d3a152d1982f82139db1c5591594177492218350c951fd2654ad92881c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4151-c8064d3a152d1982f82139db1c5591594177492218350c951fd2654ad92881c33 |
container_end_page | |
container_issue | 7 |
container_start_page | e26151 |
container_title | Journal of medical Internet research |
container_volume | 23 |
creator | Nikolov, Stanislav Blackwell, Sam Zverovitch, Alexei Mendes, Ruheena Livne, Michelle De Fauw, Jeffrey Patel, Yojan Meyer, Clemens Askham, Harry Romera-Paredes, Bernadino Kelly, Christopher Karthikesalingam, Alan Chu, Carlton Carnell, Dawn Boon, Cheng D'Souza, Derek Moinuddin, Syed Ali Garie, Bethany McQuinlan, Yasmin Ireland, Sarah Hampton, Kiarna Fuller, Krystle Montgomery, Hugh Rees, Geraint Suleyman, Mustafa Back, Trevor Hughes, Cían Owen Ledsam, Joseph R Ronneberger, Olaf |
description | Background: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. Objective: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. Methods: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. Results: We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. Conclusions: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways. |
doi_str_mv | 10.2196/26151 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f11f2c502c14834af5677c6e22c37ac</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9f11f2c502c14834af5677c6e22c37ac</doaj_id><sourcerecordid>2580721771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4151-c8064d3a152d1982f82139db1c5591594177492218350c951fd2654ad92881c33</originalsourceid><addsrcrecordid>eNpVkd1u1DAQRiMEoqX0HSwhLrdk_JPYXCCtFkorrUBqC7fWrO1kvTh2cLKV8gI8N9ndCtGr-TQzOqOjKYpLKK8oqOoDrUDAi-IcOJMLKWt4-V8-K94Mw64sackVvC7OGKdCVBWcF39WwUdvMISJLPs-zHETHLl3befiiKNPkaSG3Di0BKMl35z5RZYRx9RNpEmZ3KH1ady6jP30kXx2ridrhzn62JJlaFP247ab-48upP7APGJ-YvD2RL8f93Z6W7xqMAzu8qleFD-uvzysbhbr719vV8v1wvBZb2FkWXHLEAS1oCRtJAWm7AaMEAqE4lDXXFEKkonSKAGNpZXgaBWVEgxjF8XtiWsT7nSffYd50gm9PjZSbjXm0ZvgtGoAGmpESQ1wyTg2oqprUzlKDavRzKxPJ1a_33TOmtktY3gGfT6Jfqvb9Kglg4PNDHj3BMjp994No96lfY6zv6ZCljWdbQ5b709bJqdhyK75dwFKfXi9Pr6e_QVnbp3X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580721771</pqid></control><display><type>article</type><title>Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Library & Information Science Abstracts (LISA)</source><source>Access via ProQuest (Open Access)</source><source>Social Science Premium Collection</source><source>Library & Information Science Collection</source><source>PubMed Central</source><creator>Nikolov, Stanislav ; Blackwell, Sam ; Zverovitch, Alexei ; Mendes, Ruheena ; Livne, Michelle ; De Fauw, Jeffrey ; Patel, Yojan ; Meyer, Clemens ; Askham, Harry ; Romera-Paredes, Bernadino ; Kelly, Christopher ; Karthikesalingam, Alan ; Chu, Carlton ; Carnell, Dawn ; Boon, Cheng ; D'Souza, Derek ; Moinuddin, Syed Ali ; Garie, Bethany ; McQuinlan, Yasmin ; Ireland, Sarah ; Hampton, Kiarna ; Fuller, Krystle ; Montgomery, Hugh ; Rees, Geraint ; Suleyman, Mustafa ; Back, Trevor ; Hughes, Cían Owen ; Ledsam, Joseph R ; Ronneberger, Olaf</creator><creatorcontrib>Nikolov, Stanislav ; Blackwell, Sam ; Zverovitch, Alexei ; Mendes, Ruheena ; Livne, Michelle ; De Fauw, Jeffrey ; Patel, Yojan ; Meyer, Clemens ; Askham, Harry ; Romera-Paredes, Bernadino ; Kelly, Christopher ; Karthikesalingam, Alan ; Chu, Carlton ; Carnell, Dawn ; Boon, Cheng ; D'Souza, Derek ; Moinuddin, Syed Ali ; Garie, Bethany ; McQuinlan, Yasmin ; Ireland, Sarah ; Hampton, Kiarna ; Fuller, Krystle ; Montgomery, Hugh ; Rees, Geraint ; Suleyman, Mustafa ; Back, Trevor ; Hughes, Cían Owen ; Ledsam, Joseph R ; Ronneberger, Olaf</creatorcontrib><description>Background: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. Objective: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. Methods: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. Results: We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. Conclusions: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.</description><identifier>ISSN: 1438-8871</identifier><identifier>ISSN: 1439-4456</identifier><identifier>EISSN: 1438-8871</identifier><identifier>DOI: 10.2196/26151</identifier><identifier>PMID: 34255661</identifier><language>eng</language><publisher>Toronto: Gunther Eysenbach MD MPH, Associate Professor</publisher><subject>Algorithms ; Anatomy ; Artificial intelligence ; Automation ; Biological organs ; Business metrics ; Clinical medicine ; Cognitive style ; Contours ; Datasets ; Deep learning ; Delineation ; Generalizability ; Head & neck cancer ; Human performance ; Medical imaging ; Original Paper ; Patients ; Planning ; Radiation ; Radiation therapy ; Radiographers ; Radiotherapy ; Relevance ; Segmentation ; Tomography ; Tumors ; Validation studies</subject><ispartof>Journal of medical Internet research, 2021-07, Vol.23 (7), p.e26151</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Stanislav Nikolov, Sam Blackwell, Alexei Zverovitch, Ruheena Mendes, Michelle Livne, Jeffrey De Fauw, Yojan Patel, Clemens Meyer, Harry Askham, Bernadino Romera-Paredes, Christopher Kelly, Alan Karthikesalingam, Carlton Chu, Dawn Carnell, Cheng Boon, Derek D'Souza, Syed Ali Moinuddin, Bethany Garie, Yasmin McQuinlan, Sarah Ireland, Kiarna Hampton, Krystle Fuller, Hugh Montgomery, Geraint Rees, Mustafa Suleyman, Trevor Back, Cían Owen Hughes, Joseph R Ledsam, Olaf Ronneberger. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 12.07.2021. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4151-c8064d3a152d1982f82139db1c5591594177492218350c951fd2654ad92881c33</citedby><cites>FETCH-LOGICAL-c4151-c8064d3a152d1982f82139db1c5591594177492218350c951fd2654ad92881c33</cites><orcidid>0000-0001-6971-5678 ; 0000-0003-4754-1181 ; 0000-0002-0567-8043 ; 0000-0002-1246-844X ; 0000-0003-1165-6104 ; 0000-0003-3538-9063 ; 0000-0002-4266-1515 ; 0000-0002-8464-0640 ; 0000-0001-6397-6279 ; 0000-0002-4384-6108 ; 0000-0002-8955-8224 ; 0000-0002-9623-7007 ; 0000-0003-2652-9263 ; 0000-0001-8797-5019 ; 0000-0001-8730-3036 ; 0000-0003-0706-6857 ; 0000-0002-0567-5440 ; 0000-0001-5074-898X ; 0000-0002-5415-4457 ; 0000-0001-8282-6364 ; 0000-0001-6901-0985 ; 0000-0003-3604-3590 ; 0000-0002-2975-2447 ; 0000-0003-1530-4683 ; 0000-0001-8234-0751 ; 0000-0002-8277-4733 ; 0000-0002-2898-3219 ; 0000-0002-4393-7683 ; 0000-0001-9917-7196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2580721771/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2580721771?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,12846,21381,21394,25753,27305,27924,27925,30999,33611,33906,34135,37012,43733,43892,44590,74221,74409,75126</link.rule.ids></links><search><creatorcontrib>Nikolov, Stanislav</creatorcontrib><creatorcontrib>Blackwell, Sam</creatorcontrib><creatorcontrib>Zverovitch, Alexei</creatorcontrib><creatorcontrib>Mendes, Ruheena</creatorcontrib><creatorcontrib>Livne, Michelle</creatorcontrib><creatorcontrib>De Fauw, Jeffrey</creatorcontrib><creatorcontrib>Patel, Yojan</creatorcontrib><creatorcontrib>Meyer, Clemens</creatorcontrib><creatorcontrib>Askham, Harry</creatorcontrib><creatorcontrib>Romera-Paredes, Bernadino</creatorcontrib><creatorcontrib>Kelly, Christopher</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Chu, Carlton</creatorcontrib><creatorcontrib>Carnell, Dawn</creatorcontrib><creatorcontrib>Boon, Cheng</creatorcontrib><creatorcontrib>D'Souza, Derek</creatorcontrib><creatorcontrib>Moinuddin, Syed Ali</creatorcontrib><creatorcontrib>Garie, Bethany</creatorcontrib><creatorcontrib>McQuinlan, Yasmin</creatorcontrib><creatorcontrib>Ireland, Sarah</creatorcontrib><creatorcontrib>Hampton, Kiarna</creatorcontrib><creatorcontrib>Fuller, Krystle</creatorcontrib><creatorcontrib>Montgomery, Hugh</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Suleyman, Mustafa</creatorcontrib><creatorcontrib>Back, Trevor</creatorcontrib><creatorcontrib>Hughes, Cían Owen</creatorcontrib><creatorcontrib>Ledsam, Joseph R</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><title>Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study</title><title>Journal of medical Internet research</title><description>Background: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. Objective: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. Methods: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. Results: We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. Conclusions: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biological organs</subject><subject>Business metrics</subject><subject>Clinical medicine</subject><subject>Cognitive style</subject><subject>Contours</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Delineation</subject><subject>Generalizability</subject><subject>Head & neck cancer</subject><subject>Human performance</subject><subject>Medical imaging</subject><subject>Original Paper</subject><subject>Patients</subject><subject>Planning</subject><subject>Radiation</subject><subject>Radiation therapy</subject><subject>Radiographers</subject><subject>Radiotherapy</subject><subject>Relevance</subject><subject>Segmentation</subject><subject>Tomography</subject><subject>Tumors</subject><subject>Validation studies</subject><issn>1438-8871</issn><issn>1439-4456</issn><issn>1438-8871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M1O</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkd1u1DAQRiMEoqX0HSwhLrdk_JPYXCCtFkorrUBqC7fWrO1kvTh2cLKV8gI8N9ndCtGr-TQzOqOjKYpLKK8oqOoDrUDAi-IcOJMLKWt4-V8-K94Mw64sackVvC7OGKdCVBWcF39WwUdvMISJLPs-zHETHLl3befiiKNPkaSG3Di0BKMl35z5RZYRx9RNpEmZ3KH1ady6jP30kXx2ridrhzn62JJlaFP247ab-48upP7APGJ-YvD2RL8f93Z6W7xqMAzu8qleFD-uvzysbhbr719vV8v1wvBZb2FkWXHLEAS1oCRtJAWm7AaMEAqE4lDXXFEKkonSKAGNpZXgaBWVEgxjF8XtiWsT7nSffYd50gm9PjZSbjXm0ZvgtGoAGmpESQ1wyTg2oqprUzlKDavRzKxPJ1a_33TOmtktY3gGfT6Jfqvb9Kglg4PNDHj3BMjp994No96lfY6zv6ZCljWdbQ5b709bJqdhyK75dwFKfXi9Pr6e_QVnbp3X</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Nikolov, Stanislav</creator><creator>Blackwell, Sam</creator><creator>Zverovitch, Alexei</creator><creator>Mendes, Ruheena</creator><creator>Livne, Michelle</creator><creator>De Fauw, Jeffrey</creator><creator>Patel, Yojan</creator><creator>Meyer, Clemens</creator><creator>Askham, Harry</creator><creator>Romera-Paredes, Bernadino</creator><creator>Kelly, Christopher</creator><creator>Karthikesalingam, Alan</creator><creator>Chu, Carlton</creator><creator>Carnell, Dawn</creator><creator>Boon, Cheng</creator><creator>D'Souza, Derek</creator><creator>Moinuddin, Syed Ali</creator><creator>Garie, Bethany</creator><creator>McQuinlan, Yasmin</creator><creator>Ireland, Sarah</creator><creator>Hampton, Kiarna</creator><creator>Fuller, Krystle</creator><creator>Montgomery, Hugh</creator><creator>Rees, Geraint</creator><creator>Suleyman, Mustafa</creator><creator>Back, Trevor</creator><creator>Hughes, Cían Owen</creator><creator>Ledsam, Joseph R</creator><creator>Ronneberger, Olaf</creator><general>Gunther Eysenbach MD MPH, Associate Professor</general><general>JMIR Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QJ</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1O</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6971-5678</orcidid><orcidid>https://orcid.org/0000-0003-4754-1181</orcidid><orcidid>https://orcid.org/0000-0002-0567-8043</orcidid><orcidid>https://orcid.org/0000-0002-1246-844X</orcidid><orcidid>https://orcid.org/0000-0003-1165-6104</orcidid><orcidid>https://orcid.org/0000-0003-3538-9063</orcidid><orcidid>https://orcid.org/0000-0002-4266-1515</orcidid><orcidid>https://orcid.org/0000-0002-8464-0640</orcidid><orcidid>https://orcid.org/0000-0001-6397-6279</orcidid><orcidid>https://orcid.org/0000-0002-4384-6108</orcidid><orcidid>https://orcid.org/0000-0002-8955-8224</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0003-2652-9263</orcidid><orcidid>https://orcid.org/0000-0001-8797-5019</orcidid><orcidid>https://orcid.org/0000-0001-8730-3036</orcidid><orcidid>https://orcid.org/0000-0003-0706-6857</orcidid><orcidid>https://orcid.org/0000-0002-0567-5440</orcidid><orcidid>https://orcid.org/0000-0001-5074-898X</orcidid><orcidid>https://orcid.org/0000-0002-5415-4457</orcidid><orcidid>https://orcid.org/0000-0001-8282-6364</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0003-3604-3590</orcidid><orcidid>https://orcid.org/0000-0002-2975-2447</orcidid><orcidid>https://orcid.org/0000-0003-1530-4683</orcidid><orcidid>https://orcid.org/0000-0001-8234-0751</orcidid><orcidid>https://orcid.org/0000-0002-8277-4733</orcidid><orcidid>https://orcid.org/0000-0002-2898-3219</orcidid><orcidid>https://orcid.org/0000-0002-4393-7683</orcidid><orcidid>https://orcid.org/0000-0001-9917-7196</orcidid></search><sort><creationdate>20210712</creationdate><title>Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study</title><author>Nikolov, Stanislav ; Blackwell, Sam ; Zverovitch, Alexei ; Mendes, Ruheena ; Livne, Michelle ; De Fauw, Jeffrey ; Patel, Yojan ; Meyer, Clemens ; Askham, Harry ; Romera-Paredes, Bernadino ; Kelly, Christopher ; Karthikesalingam, Alan ; Chu, Carlton ; Carnell, Dawn ; Boon, Cheng ; D'Souza, Derek ; Moinuddin, Syed Ali ; Garie, Bethany ; McQuinlan, Yasmin ; Ireland, Sarah ; Hampton, Kiarna ; Fuller, Krystle ; Montgomery, Hugh ; Rees, Geraint ; Suleyman, Mustafa ; Back, Trevor ; Hughes, Cían Owen ; Ledsam, Joseph R ; Ronneberger, Olaf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4151-c8064d3a152d1982f82139db1c5591594177492218350c951fd2654ad92881c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biological organs</topic><topic>Business metrics</topic><topic>Clinical medicine</topic><topic>Cognitive style</topic><topic>Contours</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Delineation</topic><topic>Generalizability</topic><topic>Head & neck cancer</topic><topic>Human performance</topic><topic>Medical imaging</topic><topic>Original Paper</topic><topic>Patients</topic><topic>Planning</topic><topic>Radiation</topic><topic>Radiation therapy</topic><topic>Radiographers</topic><topic>Radiotherapy</topic><topic>Relevance</topic><topic>Segmentation</topic><topic>Tomography</topic><topic>Tumors</topic><topic>Validation studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikolov, Stanislav</creatorcontrib><creatorcontrib>Blackwell, Sam</creatorcontrib><creatorcontrib>Zverovitch, Alexei</creatorcontrib><creatorcontrib>Mendes, Ruheena</creatorcontrib><creatorcontrib>Livne, Michelle</creatorcontrib><creatorcontrib>De Fauw, Jeffrey</creatorcontrib><creatorcontrib>Patel, Yojan</creatorcontrib><creatorcontrib>Meyer, Clemens</creatorcontrib><creatorcontrib>Askham, Harry</creatorcontrib><creatorcontrib>Romera-Paredes, Bernadino</creatorcontrib><creatorcontrib>Kelly, Christopher</creatorcontrib><creatorcontrib>Karthikesalingam, Alan</creatorcontrib><creatorcontrib>Chu, Carlton</creatorcontrib><creatorcontrib>Carnell, Dawn</creatorcontrib><creatorcontrib>Boon, Cheng</creatorcontrib><creatorcontrib>D'Souza, Derek</creatorcontrib><creatorcontrib>Moinuddin, Syed Ali</creatorcontrib><creatorcontrib>Garie, Bethany</creatorcontrib><creatorcontrib>McQuinlan, Yasmin</creatorcontrib><creatorcontrib>Ireland, Sarah</creatorcontrib><creatorcontrib>Hampton, Kiarna</creatorcontrib><creatorcontrib>Fuller, Krystle</creatorcontrib><creatorcontrib>Montgomery, Hugh</creatorcontrib><creatorcontrib>Rees, Geraint</creatorcontrib><creatorcontrib>Suleyman, Mustafa</creatorcontrib><creatorcontrib>Back, Trevor</creatorcontrib><creatorcontrib>Hughes, Cían Owen</creatorcontrib><creatorcontrib>Ledsam, Joseph R</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Library Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of medical Internet research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikolov, Stanislav</au><au>Blackwell, Sam</au><au>Zverovitch, Alexei</au><au>Mendes, Ruheena</au><au>Livne, Michelle</au><au>De Fauw, Jeffrey</au><au>Patel, Yojan</au><au>Meyer, Clemens</au><au>Askham, Harry</au><au>Romera-Paredes, Bernadino</au><au>Kelly, Christopher</au><au>Karthikesalingam, Alan</au><au>Chu, Carlton</au><au>Carnell, Dawn</au><au>Boon, Cheng</au><au>D'Souza, Derek</au><au>Moinuddin, Syed Ali</au><au>Garie, Bethany</au><au>McQuinlan, Yasmin</au><au>Ireland, Sarah</au><au>Hampton, Kiarna</au><au>Fuller, Krystle</au><au>Montgomery, Hugh</au><au>Rees, Geraint</au><au>Suleyman, Mustafa</au><au>Back, Trevor</au><au>Hughes, Cían Owen</au><au>Ledsam, Joseph R</au><au>Ronneberger, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study</atitle><jtitle>Journal of medical Internet research</jtitle><date>2021-07-12</date><risdate>2021</risdate><volume>23</volume><issue>7</issue><spage>e26151</spage><pages>e26151-</pages><issn>1438-8871</issn><issn>1439-4456</issn><eissn>1438-8871</eissn><abstract>Background: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. Objective: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. Methods: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. Results: We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. Conclusions: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.</abstract><cop>Toronto</cop><pub>Gunther Eysenbach MD MPH, Associate Professor</pub><pmid>34255661</pmid><doi>10.2196/26151</doi><orcidid>https://orcid.org/0000-0001-6971-5678</orcidid><orcidid>https://orcid.org/0000-0003-4754-1181</orcidid><orcidid>https://orcid.org/0000-0002-0567-8043</orcidid><orcidid>https://orcid.org/0000-0002-1246-844X</orcidid><orcidid>https://orcid.org/0000-0003-1165-6104</orcidid><orcidid>https://orcid.org/0000-0003-3538-9063</orcidid><orcidid>https://orcid.org/0000-0002-4266-1515</orcidid><orcidid>https://orcid.org/0000-0002-8464-0640</orcidid><orcidid>https://orcid.org/0000-0001-6397-6279</orcidid><orcidid>https://orcid.org/0000-0002-4384-6108</orcidid><orcidid>https://orcid.org/0000-0002-8955-8224</orcidid><orcidid>https://orcid.org/0000-0002-9623-7007</orcidid><orcidid>https://orcid.org/0000-0003-2652-9263</orcidid><orcidid>https://orcid.org/0000-0001-8797-5019</orcidid><orcidid>https://orcid.org/0000-0001-8730-3036</orcidid><orcidid>https://orcid.org/0000-0003-0706-6857</orcidid><orcidid>https://orcid.org/0000-0002-0567-5440</orcidid><orcidid>https://orcid.org/0000-0001-5074-898X</orcidid><orcidid>https://orcid.org/0000-0002-5415-4457</orcidid><orcidid>https://orcid.org/0000-0001-8282-6364</orcidid><orcidid>https://orcid.org/0000-0001-6901-0985</orcidid><orcidid>https://orcid.org/0000-0003-3604-3590</orcidid><orcidid>https://orcid.org/0000-0002-2975-2447</orcidid><orcidid>https://orcid.org/0000-0003-1530-4683</orcidid><orcidid>https://orcid.org/0000-0001-8234-0751</orcidid><orcidid>https://orcid.org/0000-0002-8277-4733</orcidid><orcidid>https://orcid.org/0000-0002-2898-3219</orcidid><orcidid>https://orcid.org/0000-0002-4393-7683</orcidid><orcidid>https://orcid.org/0000-0001-9917-7196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-8871 |
ispartof | Journal of medical Internet research, 2021-07, Vol.23 (7), p.e26151 |
issn | 1438-8871 1439-4456 1438-8871 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9f11f2c502c14834af5677c6e22c37ac |
source | Applied Social Sciences Index & Abstracts (ASSIA); Library & Information Science Abstracts (LISA); Access via ProQuest (Open Access); Social Science Premium Collection; Library & Information Science Collection; PubMed Central |
subjects | Algorithms Anatomy Artificial intelligence Automation Biological organs Business metrics Clinical medicine Cognitive style Contours Datasets Deep learning Delineation Generalizability Head & neck cancer Human performance Medical imaging Original Paper Patients Planning Radiation Radiation therapy Radiographers Radiotherapy Relevance Segmentation Tomography Tumors Validation studies |
title | Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinically%20Applicable%20Segmentation%20of%20Head%20and%20Neck%20Anatomy%20for%20Radiotherapy:%20Deep%20Learning%20Algorithm%20Development%20and%20Validation%20Study&rft.jtitle=Journal%20of%20medical%20Internet%20research&rft.au=Nikolov,%20Stanislav&rft.date=2021-07-12&rft.volume=23&rft.issue=7&rft.spage=e26151&rft.pages=e26151-&rft.issn=1438-8871&rft.eissn=1438-8871&rft_id=info:doi/10.2196/26151&rft_dat=%3Cproquest_doaj_%3E2580721771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4151-c8064d3a152d1982f82139db1c5591594177492218350c951fd2654ad92881c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2580721771&rft_id=info:pmid/34255661&rfr_iscdi=true |