Loading…

Electric field responsive nanotransducers for glioblastoma

BackgroundElectric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating current (AC) electric fields (EF) leading to the disruption...

Full description

Saved in:
Bibliographic Details
Published in:Bioelectronic medicine 2022-10, Vol.8 (1), p.1-17, Article 17
Main Authors: Jain, Akhil, Jobson, Isobel, Griffin, Michaela, Rahman, Ruman, Smith, Stuart, Rawson, Frankie J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4557-a9bd4527a5a517ee036f8dbb8fead3842a334b0a8117ec34b422d6033170afe73
cites cdi_FETCH-LOGICAL-c4557-a9bd4527a5a517ee036f8dbb8fead3842a334b0a8117ec34b422d6033170afe73
container_end_page 17
container_issue 1
container_start_page 1
container_title Bioelectronic medicine
container_volume 8
creator Jain, Akhil
Jobson, Isobel
Griffin, Michaela
Rahman, Ruman
Smith, Stuart
Rawson, Frankie J.
description BackgroundElectric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating current (AC) electric fields (EF) leading to the disruption of dipole alignment and induced dielectrophoresis (DEP) during cytokinesis. Although TTFields have a favourable side effect profile, particularly compared to cytotoxic chemotherapy, survival benefits remain limited (~ 4.9 months) after an extensive treatment regime (20 hours/day for 18 months). The cost of the technology also limits its clinical adoption worldwide. Therefore, the discovery of new technology that can enhance both the therapeutic efficiency and efficacy of these TTFields will be of great benefit to cancer treatment and decrease healthcare costs worldwide.MethodsIn this work, we report the role of electrically conductive gold (GNPs), dielectric silica oxide (SiO2), and semiconductor zinc oxide (ZnO) nanoparticles (NPs) as transducers for enhancing EF mediated anticancer effects on patient derived GBM cells. Physicochemical properties of these NPs were analyzed using spectroscopic, electron microscopy, and light-scattering techniques.ResultsIn vitro TTFields studies indicated an enhanced reduction in the metabolic activity of patient-derived Glioma INvasive marginal (GIN 28) and Glioma contrast enhanced core (GCE 28) GBM cells in groups treated with NPs vs. control groups, irrespective of NPs dielectric properties. Our results indicate the inorganic NPs used in this work enhance the intracellular EF effects that could be due to the virtue of bipolar dielectrophoretic and electrophoretic effects.ConclusionsThis work presents preliminary evidence which could help to improve future EF applications for bioelectronic medicine. Furthermore, the merits of spherical morphology, excellent colloidal stability, and low toxicity, make these NPs ideal for future studies for elucidating the detailed mechanism and efficacy upon their delivery in GBM preclinical models.
doi_str_mv 10.1186/s42234-022-00099-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f48a496f59f4d6093549a401cff4a1d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9f48a496f59f4d6093549a401cff4a1d</doaj_id><sourcerecordid>2726408311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4557-a9bd4527a5a517ee036f8dbb8fead3842a334b0a8117ec34b422d6033170afe73</originalsourceid><addsrcrecordid>eNpdkU1LHTEUhodioaL-ga4GunEzNt-TuBBEtBWEbtp1OJOc3OaSO7lNZgT_valXSnWVl5yHh5y8XfeZkgtKtfpaBWNcDISxgRBizDB-6I4Z52zQWquj__Kn7qzWbYOo4UIzddxd3iZ0S4muDxGT7wvWfZ5rfMR-hjkvBebqV4el9iGXfpNinhLUJe_gtPsYIFU8ez1Pul93tz9vvg8PP77d31w_DE5IOQ5gJi8kG0GCpCMi4SpoP006IHiuBQPOxURA0zZ1LbZtvCKc05FAwJGfdPcHr8-wtfsSd1CebIZoXy5y2VgoS3QJrQlCgzAqyJaaxHApDAhCXQgCqG-uq4Nrv0479A7ntmF6I307meNvu8mP1khNKFdNcP4qKPnPinWxu1gdpgQz5rVaNjIliOaUNvTLO3Sb1zK3r7JMC625VIo1ih0oV3KtBcO_x1Bi_9ZrD_XaVq99qdeO_Bl6DJf9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848835662</pqid></control><display><type>article</type><title>Electric field responsive nanotransducers for glioblastoma</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Jain, Akhil ; Jobson, Isobel ; Griffin, Michaela ; Rahman, Ruman ; Smith, Stuart ; Rawson, Frankie J.</creator><creatorcontrib>Jain, Akhil ; Jobson, Isobel ; Griffin, Michaela ; Rahman, Ruman ; Smith, Stuart ; Rawson, Frankie J.</creatorcontrib><description>BackgroundElectric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating current (AC) electric fields (EF) leading to the disruption of dipole alignment and induced dielectrophoresis (DEP) during cytokinesis. Although TTFields have a favourable side effect profile, particularly compared to cytotoxic chemotherapy, survival benefits remain limited (~ 4.9 months) after an extensive treatment regime (20 hours/day for 18 months). The cost of the technology also limits its clinical adoption worldwide. Therefore, the discovery of new technology that can enhance both the therapeutic efficiency and efficacy of these TTFields will be of great benefit to cancer treatment and decrease healthcare costs worldwide.MethodsIn this work, we report the role of electrically conductive gold (GNPs), dielectric silica oxide (SiO2), and semiconductor zinc oxide (ZnO) nanoparticles (NPs) as transducers for enhancing EF mediated anticancer effects on patient derived GBM cells. Physicochemical properties of these NPs were analyzed using spectroscopic, electron microscopy, and light-scattering techniques.ResultsIn vitro TTFields studies indicated an enhanced reduction in the metabolic activity of patient-derived Glioma INvasive marginal (GIN 28) and Glioma contrast enhanced core (GCE 28) GBM cells in groups treated with NPs vs. control groups, irrespective of NPs dielectric properties. Our results indicate the inorganic NPs used in this work enhance the intracellular EF effects that could be due to the virtue of bipolar dielectrophoretic and electrophoretic effects.ConclusionsThis work presents preliminary evidence which could help to improve future EF applications for bioelectronic medicine. Furthermore, the merits of spherical morphology, excellent colloidal stability, and low toxicity, make these NPs ideal for future studies for elucidating the detailed mechanism and efficacy upon their delivery in GBM preclinical models.</description><identifier>ISSN: 2332-8886</identifier><identifier>EISSN: 2332-8886</identifier><identifier>DOI: 10.1186/s42234-022-00099-7</identifier><language>eng</language><publisher>New York: BioMed Central</publisher><subject>Apoptosis ; Brain cancer ; Cell culture ; Cell division ; Electric fields ; FDA approval ; Glioblastoma ; Inorganic nanoparticles ; Metabolism ; Nanomaterials ; Penicillin ; Toxicity ; Tumor Treating Fields ; Tumors ; Zinc oxides</subject><ispartof>Bioelectronic medicine, 2022-10, Vol.8 (1), p.1-17, Article 17</ispartof><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4557-a9bd4527a5a517ee036f8dbb8fead3842a334b0a8117ec34b422d6033170afe73</citedby><cites>FETCH-LOGICAL-c4557-a9bd4527a5a517ee036f8dbb8fead3842a334b0a8117ec34b422d6033170afe73</cites><orcidid>0000-0002-4872-8928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2848835662/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2848835662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Jain, Akhil</creatorcontrib><creatorcontrib>Jobson, Isobel</creatorcontrib><creatorcontrib>Griffin, Michaela</creatorcontrib><creatorcontrib>Rahman, Ruman</creatorcontrib><creatorcontrib>Smith, Stuart</creatorcontrib><creatorcontrib>Rawson, Frankie J.</creatorcontrib><title>Electric field responsive nanotransducers for glioblastoma</title><title>Bioelectronic medicine</title><description>BackgroundElectric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating current (AC) electric fields (EF) leading to the disruption of dipole alignment and induced dielectrophoresis (DEP) during cytokinesis. Although TTFields have a favourable side effect profile, particularly compared to cytotoxic chemotherapy, survival benefits remain limited (~ 4.9 months) after an extensive treatment regime (20 hours/day for 18 months). The cost of the technology also limits its clinical adoption worldwide. Therefore, the discovery of new technology that can enhance both the therapeutic efficiency and efficacy of these TTFields will be of great benefit to cancer treatment and decrease healthcare costs worldwide.MethodsIn this work, we report the role of electrically conductive gold (GNPs), dielectric silica oxide (SiO2), and semiconductor zinc oxide (ZnO) nanoparticles (NPs) as transducers for enhancing EF mediated anticancer effects on patient derived GBM cells. Physicochemical properties of these NPs were analyzed using spectroscopic, electron microscopy, and light-scattering techniques.ResultsIn vitro TTFields studies indicated an enhanced reduction in the metabolic activity of patient-derived Glioma INvasive marginal (GIN 28) and Glioma contrast enhanced core (GCE 28) GBM cells in groups treated with NPs vs. control groups, irrespective of NPs dielectric properties. Our results indicate the inorganic NPs used in this work enhance the intracellular EF effects that could be due to the virtue of bipolar dielectrophoretic and electrophoretic effects.ConclusionsThis work presents preliminary evidence which could help to improve future EF applications for bioelectronic medicine. Furthermore, the merits of spherical morphology, excellent colloidal stability, and low toxicity, make these NPs ideal for future studies for elucidating the detailed mechanism and efficacy upon their delivery in GBM preclinical models.</description><subject>Apoptosis</subject><subject>Brain cancer</subject><subject>Cell culture</subject><subject>Cell division</subject><subject>Electric fields</subject><subject>FDA approval</subject><subject>Glioblastoma</subject><subject>Inorganic nanoparticles</subject><subject>Metabolism</subject><subject>Nanomaterials</subject><subject>Penicillin</subject><subject>Toxicity</subject><subject>Tumor Treating Fields</subject><subject>Tumors</subject><subject>Zinc oxides</subject><issn>2332-8886</issn><issn>2332-8886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU1LHTEUhodioaL-ga4GunEzNt-TuBBEtBWEbtp1OJOc3OaSO7lNZgT_valXSnWVl5yHh5y8XfeZkgtKtfpaBWNcDISxgRBizDB-6I4Z52zQWquj__Kn7qzWbYOo4UIzddxd3iZ0S4muDxGT7wvWfZ5rfMR-hjkvBebqV4el9iGXfpNinhLUJe_gtPsYIFU8ez1Pul93tz9vvg8PP77d31w_DE5IOQ5gJi8kG0GCpCMi4SpoP006IHiuBQPOxURA0zZ1LbZtvCKc05FAwJGfdPcHr8-wtfsSd1CebIZoXy5y2VgoS3QJrQlCgzAqyJaaxHApDAhCXQgCqG-uq4Nrv0479A7ntmF6I307meNvu8mP1khNKFdNcP4qKPnPinWxu1gdpgQz5rVaNjIliOaUNvTLO3Sb1zK3r7JMC625VIo1ih0oV3KtBcO_x1Bi_9ZrD_XaVq99qdeO_Bl6DJf9</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Jain, Akhil</creator><creator>Jobson, Isobel</creator><creator>Griffin, Michaela</creator><creator>Rahman, Ruman</creator><creator>Smith, Stuart</creator><creator>Rawson, Frankie J.</creator><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4872-8928</orcidid></search><sort><creationdate>20221019</creationdate><title>Electric field responsive nanotransducers for glioblastoma</title><author>Jain, Akhil ; Jobson, Isobel ; Griffin, Michaela ; Rahman, Ruman ; Smith, Stuart ; Rawson, Frankie J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4557-a9bd4527a5a517ee036f8dbb8fead3842a334b0a8117ec34b422d6033170afe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apoptosis</topic><topic>Brain cancer</topic><topic>Cell culture</topic><topic>Cell division</topic><topic>Electric fields</topic><topic>FDA approval</topic><topic>Glioblastoma</topic><topic>Inorganic nanoparticles</topic><topic>Metabolism</topic><topic>Nanomaterials</topic><topic>Penicillin</topic><topic>Toxicity</topic><topic>Tumor Treating Fields</topic><topic>Tumors</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Akhil</creatorcontrib><creatorcontrib>Jobson, Isobel</creatorcontrib><creatorcontrib>Griffin, Michaela</creatorcontrib><creatorcontrib>Rahman, Ruman</creatorcontrib><creatorcontrib>Smith, Stuart</creatorcontrib><creatorcontrib>Rawson, Frankie J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Bioelectronic medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Akhil</au><au>Jobson, Isobel</au><au>Griffin, Michaela</au><au>Rahman, Ruman</au><au>Smith, Stuart</au><au>Rawson, Frankie J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric field responsive nanotransducers for glioblastoma</atitle><jtitle>Bioelectronic medicine</jtitle><date>2022-10-19</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>17</artnum><issn>2332-8886</issn><eissn>2332-8886</eissn><abstract>BackgroundElectric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating current (AC) electric fields (EF) leading to the disruption of dipole alignment and induced dielectrophoresis (DEP) during cytokinesis. Although TTFields have a favourable side effect profile, particularly compared to cytotoxic chemotherapy, survival benefits remain limited (~ 4.9 months) after an extensive treatment regime (20 hours/day for 18 months). The cost of the technology also limits its clinical adoption worldwide. Therefore, the discovery of new technology that can enhance both the therapeutic efficiency and efficacy of these TTFields will be of great benefit to cancer treatment and decrease healthcare costs worldwide.MethodsIn this work, we report the role of electrically conductive gold (GNPs), dielectric silica oxide (SiO2), and semiconductor zinc oxide (ZnO) nanoparticles (NPs) as transducers for enhancing EF mediated anticancer effects on patient derived GBM cells. Physicochemical properties of these NPs were analyzed using spectroscopic, electron microscopy, and light-scattering techniques.ResultsIn vitro TTFields studies indicated an enhanced reduction in the metabolic activity of patient-derived Glioma INvasive marginal (GIN 28) and Glioma contrast enhanced core (GCE 28) GBM cells in groups treated with NPs vs. control groups, irrespective of NPs dielectric properties. Our results indicate the inorganic NPs used in this work enhance the intracellular EF effects that could be due to the virtue of bipolar dielectrophoretic and electrophoretic effects.ConclusionsThis work presents preliminary evidence which could help to improve future EF applications for bioelectronic medicine. Furthermore, the merits of spherical morphology, excellent colloidal stability, and low toxicity, make these NPs ideal for future studies for elucidating the detailed mechanism and efficacy upon their delivery in GBM preclinical models.</abstract><cop>New York</cop><pub>BioMed Central</pub><doi>10.1186/s42234-022-00099-7</doi><orcidid>https://orcid.org/0000-0002-4872-8928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2332-8886
ispartof Bioelectronic medicine, 2022-10, Vol.8 (1), p.1-17, Article 17
issn 2332-8886
2332-8886
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9f48a496f59f4d6093549a401cff4a1d
source Open Access: PubMed Central; Publicly Available Content Database
subjects Apoptosis
Brain cancer
Cell culture
Cell division
Electric fields
FDA approval
Glioblastoma
Inorganic nanoparticles
Metabolism
Nanomaterials
Penicillin
Toxicity
Tumor Treating Fields
Tumors
Zinc oxides
title Electric field responsive nanotransducers for glioblastoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A26%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20field%20responsive%20nanotransducers%20for%20glioblastoma&rft.jtitle=Bioelectronic%20medicine&rft.au=Jain,%20Akhil&rft.date=2022-10-19&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=17&rft.issn=2332-8886&rft.eissn=2332-8886&rft_id=info:doi/10.1186/s42234-022-00099-7&rft_dat=%3Cproquest_doaj_%3E2726408311%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4557-a9bd4527a5a517ee036f8dbb8fead3842a334b0a8117ec34b422d6033170afe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2848835662&rft_id=info:pmid/&rfr_iscdi=true