Loading…
Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries
A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that...
Saved in:
Published in: | Batteries (Basel) 2023-01, Vol.9 (1), p.32 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43 |
container_end_page | |
container_issue | 1 |
container_start_page | 32 |
container_title | Batteries (Basel) |
container_volume | 9 |
creator | Wang, Lixia Zhao, Taibao Chen, Ruiping Fang, Hua Yang, Yihao Cao, Yang Zhang, Linsen |
description | A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2. |
doi_str_mv | 10.3390/batteries9010032 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f53895d6f8d4dc1a42a555f3a3203bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9f53895d6f8d4dc1a42a555f3a3203bc</doaj_id><sourcerecordid>2767164782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEUqu29x4tcQ7YnmRt34AW2pW2rUBwtib2eNerbBwcr0Rv_dOb7QJCnObr6TdPelV1Kfg7AMPfd1gK5UiT4YJzkK-qUwkC6nlqX__Tn1QX07TlnAutlJTqtHq6S_1j52nY79h9LDl6Yjh49vDr0H3d41Dmy3Uq7MPLPa1pqK_TSJ7dZBw3NBC7xyG5tBvTFAuxOzxYwZ6FlNk3chvMa8KuJ7aKZRNn2jIN7NMfx-fVm4D9RBe_61n148vn71e39erhZnn1cVU7UKbUUqPquJGd4gIaLRfgObSgyRsTgm616RQiOSMEhhCc4joAN0ogAoXQwFm1PHJ9wq0dc9xhfrQJo31ZpLy2mEt0PVkTZrBp_SJo33gnsJHYtm0ABMmhczPr7ZE15vRzT1Ox27TPw2zfSrVQYtEoLWcVP6pcTtOUKfz9Krg9xGb_jw2eASefjcg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767164782</pqid></control><display><type>article</type><title>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</title><source>Publicly Available Content Database</source><creator>Wang, Lixia ; Zhao, Taibao ; Chen, Ruiping ; Fang, Hua ; Yang, Yihao ; Cao, Yang ; Zhang, Linsen</creator><creatorcontrib>Wang, Lixia ; Zhao, Taibao ; Chen, Ruiping ; Fang, Hua ; Yang, Yihao ; Cao, Yang ; Zhang, Linsen</creatorcontrib><description>A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.</description><identifier>ISSN: 2313-0105</identifier><identifier>EISSN: 2313-0105</identifier><identifier>DOI: 10.3390/batteries9010032</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Composite materials ; Current density ; Electrical resistivity ; electrochemical performance ; Graphene ; Graphite ; Lithium ; Lithium-ion batteries ; Molybdenum ; molybdenum nitride ; molybdenum oxide ; Molybdenum oxides ; Nanocomposites ; Nitrides ; Nitrogen ; nitrogen-doped graphene ; Quantum dots ; Rechargeable batteries ; Spectrum analysis ; Synergistic effect</subject><ispartof>Batteries (Basel), 2023-01, Vol.9 (1), p.32</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</citedby><cites>FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</cites><orcidid>0000-0002-5585-6020 ; 0000-0001-6234-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767164782/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767164782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Wang, Lixia</creatorcontrib><creatorcontrib>Zhao, Taibao</creatorcontrib><creatorcontrib>Chen, Ruiping</creatorcontrib><creatorcontrib>Fang, Hua</creatorcontrib><creatorcontrib>Yang, Yihao</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Linsen</creatorcontrib><title>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</title><title>Batteries (Basel)</title><description>A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.</description><subject>Carbon</subject><subject>Composite materials</subject><subject>Current density</subject><subject>Electrical resistivity</subject><subject>electrochemical performance</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molybdenum</subject><subject>molybdenum nitride</subject><subject>molybdenum oxide</subject><subject>Molybdenum oxides</subject><subject>Nanocomposites</subject><subject>Nitrides</subject><subject>Nitrogen</subject><subject>nitrogen-doped graphene</subject><subject>Quantum dots</subject><subject>Rechargeable batteries</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><issn>2313-0105</issn><issn>2313-0105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1v1DAQxSMEUqu29x4tcQ7YnmRt34AW2pW2rUBwtib2eNerbBwcr0Rv_dOb7QJCnObr6TdPelV1Kfg7AMPfd1gK5UiT4YJzkK-qUwkC6nlqX__Tn1QX07TlnAutlJTqtHq6S_1j52nY79h9LDl6Yjh49vDr0H3d41Dmy3Uq7MPLPa1pqK_TSJ7dZBw3NBC7xyG5tBvTFAuxOzxYwZ6FlNk3chvMa8KuJ7aKZRNn2jIN7NMfx-fVm4D9RBe_61n148vn71e39erhZnn1cVU7UKbUUqPquJGd4gIaLRfgObSgyRsTgm616RQiOSMEhhCc4joAN0ogAoXQwFm1PHJ9wq0dc9xhfrQJo31ZpLy2mEt0PVkTZrBp_SJo33gnsJHYtm0ABMmhczPr7ZE15vRzT1Ox27TPw2zfSrVQYtEoLWcVP6pcTtOUKfz9Krg9xGb_jw2eASefjcg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Lixia</creator><creator>Zhao, Taibao</creator><creator>Chen, Ruiping</creator><creator>Fang, Hua</creator><creator>Yang, Yihao</creator><creator>Cao, Yang</creator><creator>Zhang, Linsen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5585-6020</orcidid><orcidid>https://orcid.org/0000-0001-6234-7753</orcidid></search><sort><creationdate>20230101</creationdate><title>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</title><author>Wang, Lixia ; Zhao, Taibao ; Chen, Ruiping ; Fang, Hua ; Yang, Yihao ; Cao, Yang ; Zhang, Linsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Composite materials</topic><topic>Current density</topic><topic>Electrical resistivity</topic><topic>electrochemical performance</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molybdenum</topic><topic>molybdenum nitride</topic><topic>molybdenum oxide</topic><topic>Molybdenum oxides</topic><topic>Nanocomposites</topic><topic>Nitrides</topic><topic>Nitrogen</topic><topic>nitrogen-doped graphene</topic><topic>Quantum dots</topic><topic>Rechargeable batteries</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lixia</creatorcontrib><creatorcontrib>Zhao, Taibao</creatorcontrib><creatorcontrib>Chen, Ruiping</creatorcontrib><creatorcontrib>Fang, Hua</creatorcontrib><creatorcontrib>Yang, Yihao</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Linsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Batteries (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lixia</au><au>Zhao, Taibao</au><au>Chen, Ruiping</au><au>Fang, Hua</au><au>Yang, Yihao</au><au>Cao, Yang</au><au>Zhang, Linsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</atitle><jtitle>Batteries (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>2313-0105</issn><eissn>2313-0105</eissn><abstract>A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/batteries9010032</doi><orcidid>https://orcid.org/0000-0002-5585-6020</orcidid><orcidid>https://orcid.org/0000-0001-6234-7753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2313-0105 |
ispartof | Batteries (Basel), 2023-01, Vol.9 (1), p.32 |
issn | 2313-0105 2313-0105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9f53895d6f8d4dc1a42a555f3a3203bc |
source | Publicly Available Content Database |
subjects | Carbon Composite materials Current density Electrical resistivity electrochemical performance Graphene Graphite Lithium Lithium-ion batteries Molybdenum molybdenum nitride molybdenum oxide Molybdenum oxides Nanocomposites Nitrides Nitrogen nitrogen-doped graphene Quantum dots Rechargeable batteries Spectrum analysis Synergistic effect |
title | Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdenum%20Nitride%20and%20Oxide%20Quantum%20Dot%20@%20Nitrogen-Doped%20Graphene%20Nanocomposite%20Material%20for%20Rechargeable%20Lithium%20Ion%20Batteries&rft.jtitle=Batteries%20(Basel)&rft.au=Wang,%20Lixia&rft.date=2023-01-01&rft.volume=9&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=2313-0105&rft.eissn=2313-0105&rft_id=info:doi/10.3390/batteries9010032&rft_dat=%3Cproquest_doaj_%3E2767164782%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767164782&rft_id=info:pmid/&rfr_iscdi=true |