Loading…

Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries

A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that...

Full description

Saved in:
Bibliographic Details
Published in:Batteries (Basel) 2023-01, Vol.9 (1), p.32
Main Authors: Wang, Lixia, Zhao, Taibao, Chen, Ruiping, Fang, Hua, Yang, Yihao, Cao, Yang, Zhang, Linsen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43
cites cdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43
container_end_page
container_issue 1
container_start_page 32
container_title Batteries (Basel)
container_volume 9
creator Wang, Lixia
Zhao, Taibao
Chen, Ruiping
Fang, Hua
Yang, Yihao
Cao, Yang
Zhang, Linsen
description A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.
doi_str_mv 10.3390/batteries9010032
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f53895d6f8d4dc1a42a555f3a3203bc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9f53895d6f8d4dc1a42a555f3a3203bc</doaj_id><sourcerecordid>2767164782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEUqu29x4tcQ7YnmRt34AW2pW2rUBwtib2eNerbBwcr0Rv_dOb7QJCnObr6TdPelV1Kfg7AMPfd1gK5UiT4YJzkK-qUwkC6nlqX__Tn1QX07TlnAutlJTqtHq6S_1j52nY79h9LDl6Yjh49vDr0H3d41Dmy3Uq7MPLPa1pqK_TSJ7dZBw3NBC7xyG5tBvTFAuxOzxYwZ6FlNk3chvMa8KuJ7aKZRNn2jIN7NMfx-fVm4D9RBe_61n148vn71e39erhZnn1cVU7UKbUUqPquJGd4gIaLRfgObSgyRsTgm616RQiOSMEhhCc4joAN0ogAoXQwFm1PHJ9wq0dc9xhfrQJo31ZpLy2mEt0PVkTZrBp_SJo33gnsJHYtm0ABMmhczPr7ZE15vRzT1Ox27TPw2zfSrVQYtEoLWcVP6pcTtOUKfz9Krg9xGb_jw2eASefjcg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767164782</pqid></control><display><type>article</type><title>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</title><source>Publicly Available Content Database</source><creator>Wang, Lixia ; Zhao, Taibao ; Chen, Ruiping ; Fang, Hua ; Yang, Yihao ; Cao, Yang ; Zhang, Linsen</creator><creatorcontrib>Wang, Lixia ; Zhao, Taibao ; Chen, Ruiping ; Fang, Hua ; Yang, Yihao ; Cao, Yang ; Zhang, Linsen</creatorcontrib><description>A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.</description><identifier>ISSN: 2313-0105</identifier><identifier>EISSN: 2313-0105</identifier><identifier>DOI: 10.3390/batteries9010032</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon ; Composite materials ; Current density ; Electrical resistivity ; electrochemical performance ; Graphene ; Graphite ; Lithium ; Lithium-ion batteries ; Molybdenum ; molybdenum nitride ; molybdenum oxide ; Molybdenum oxides ; Nanocomposites ; Nitrides ; Nitrogen ; nitrogen-doped graphene ; Quantum dots ; Rechargeable batteries ; Spectrum analysis ; Synergistic effect</subject><ispartof>Batteries (Basel), 2023-01, Vol.9 (1), p.32</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</citedby><cites>FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</cites><orcidid>0000-0002-5585-6020 ; 0000-0001-6234-7753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2767164782/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2767164782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Wang, Lixia</creatorcontrib><creatorcontrib>Zhao, Taibao</creatorcontrib><creatorcontrib>Chen, Ruiping</creatorcontrib><creatorcontrib>Fang, Hua</creatorcontrib><creatorcontrib>Yang, Yihao</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Linsen</creatorcontrib><title>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</title><title>Batteries (Basel)</title><description>A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.</description><subject>Carbon</subject><subject>Composite materials</subject><subject>Current density</subject><subject>Electrical resistivity</subject><subject>electrochemical performance</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molybdenum</subject><subject>molybdenum nitride</subject><subject>molybdenum oxide</subject><subject>Molybdenum oxides</subject><subject>Nanocomposites</subject><subject>Nitrides</subject><subject>Nitrogen</subject><subject>nitrogen-doped graphene</subject><subject>Quantum dots</subject><subject>Rechargeable batteries</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><issn>2313-0105</issn><issn>2313-0105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc1v1DAQxSMEUqu29x4tcQ7YnmRt34AW2pW2rUBwtib2eNerbBwcr0Rv_dOb7QJCnObr6TdPelV1Kfg7AMPfd1gK5UiT4YJzkK-qUwkC6nlqX__Tn1QX07TlnAutlJTqtHq6S_1j52nY79h9LDl6Yjh49vDr0H3d41Dmy3Uq7MPLPa1pqK_TSJ7dZBw3NBC7xyG5tBvTFAuxOzxYwZ6FlNk3chvMa8KuJ7aKZRNn2jIN7NMfx-fVm4D9RBe_61n148vn71e39erhZnn1cVU7UKbUUqPquJGd4gIaLRfgObSgyRsTgm616RQiOSMEhhCc4joAN0ogAoXQwFm1PHJ9wq0dc9xhfrQJo31ZpLy2mEt0PVkTZrBp_SJo33gnsJHYtm0ABMmhczPr7ZE15vRzT1Ox27TPw2zfSrVQYtEoLWcVP6pcTtOUKfz9Krg9xGb_jw2eASefjcg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Lixia</creator><creator>Zhao, Taibao</creator><creator>Chen, Ruiping</creator><creator>Fang, Hua</creator><creator>Yang, Yihao</creator><creator>Cao, Yang</creator><creator>Zhang, Linsen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5585-6020</orcidid><orcidid>https://orcid.org/0000-0001-6234-7753</orcidid></search><sort><creationdate>20230101</creationdate><title>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</title><author>Wang, Lixia ; Zhao, Taibao ; Chen, Ruiping ; Fang, Hua ; Yang, Yihao ; Cao, Yang ; Zhang, Linsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Composite materials</topic><topic>Current density</topic><topic>Electrical resistivity</topic><topic>electrochemical performance</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molybdenum</topic><topic>molybdenum nitride</topic><topic>molybdenum oxide</topic><topic>Molybdenum oxides</topic><topic>Nanocomposites</topic><topic>Nitrides</topic><topic>Nitrogen</topic><topic>nitrogen-doped graphene</topic><topic>Quantum dots</topic><topic>Rechargeable batteries</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lixia</creatorcontrib><creatorcontrib>Zhao, Taibao</creatorcontrib><creatorcontrib>Chen, Ruiping</creatorcontrib><creatorcontrib>Fang, Hua</creatorcontrib><creatorcontrib>Yang, Yihao</creatorcontrib><creatorcontrib>Cao, Yang</creatorcontrib><creatorcontrib>Zhang, Linsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Batteries (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lixia</au><au>Zhao, Taibao</au><au>Chen, Ruiping</au><au>Fang, Hua</au><au>Yang, Yihao</au><au>Cao, Yang</au><au>Zhang, Linsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries</atitle><jtitle>Batteries (Basel)</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>32</spage><pages>32-</pages><issn>2313-0105</issn><eissn>2313-0105</eissn><abstract>A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/batteries9010032</doi><orcidid>https://orcid.org/0000-0002-5585-6020</orcidid><orcidid>https://orcid.org/0000-0001-6234-7753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2313-0105
ispartof Batteries (Basel), 2023-01, Vol.9 (1), p.32
issn 2313-0105
2313-0105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9f53895d6f8d4dc1a42a555f3a3203bc
source Publicly Available Content Database
subjects Carbon
Composite materials
Current density
Electrical resistivity
electrochemical performance
Graphene
Graphite
Lithium
Lithium-ion batteries
Molybdenum
molybdenum nitride
molybdenum oxide
Molybdenum oxides
Nanocomposites
Nitrides
Nitrogen
nitrogen-doped graphene
Quantum dots
Rechargeable batteries
Spectrum analysis
Synergistic effect
title Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdenum%20Nitride%20and%20Oxide%20Quantum%20Dot%20@%20Nitrogen-Doped%20Graphene%20Nanocomposite%20Material%20for%20Rechargeable%20Lithium%20Ion%20Batteries&rft.jtitle=Batteries%20(Basel)&rft.au=Wang,%20Lixia&rft.date=2023-01-01&rft.volume=9&rft.issue=1&rft.spage=32&rft.pages=32-&rft.issn=2313-0105&rft.eissn=2313-0105&rft_id=info:doi/10.3390/batteries9010032&rft_dat=%3Cproquest_doaj_%3E2767164782%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-28a7b092b701348263d03538ed99ff8589b7aaec911afffc708f30971aa3eff43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767164782&rft_id=info:pmid/&rfr_iscdi=true