Loading…

Estimating transcriptome complexities across eukaryotes

Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable...

Full description

Saved in:
Bibliographic Details
Published in:BMC genomics 2023-05, Vol.24 (1), p.254-20, Article 254
Main Authors: Titus-McQuillan, James E, Nanni, Adalena V, McIntyre, Lauren M, Rogers, Rebekah L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c598t-dc2b046560536c944ebfbeb774d968755a40901a7bd0d9b6cc9f107e01e25a9a3
cites cdi_FETCH-LOGICAL-c598t-dc2b046560536c944ebfbeb774d968755a40901a7bd0d9b6cc9f107e01e25a9a3
container_end_page 20
container_issue 1
container_start_page 254
container_title BMC genomics
container_volume 24
creator Titus-McQuillan, James E
Nanni, Adalena V
McIntyre, Lauren M
Rogers, Rebekah L
description Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable lack of correspondence" between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, we use a set of complexity metrics that allow for evaluating changes in complexity using TranD. We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as complexity varies. In this study, we define three metrics - TpG, EpT, and EpG- to quantify the transcriptome's complexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are biased towards low-complexity genes with few exons and few alternative transcripts. With our metric analyses, we are able to quantify changes in complexity across diverse lineages with greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as they lower complexity.
doi_str_mv 10.1186/s12864-023-09326-0
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f571859f5c24c0e85b11355eb614495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A748958682</galeid><doaj_id>oai_doaj_org_article_9f571859f5c24c0e85b11355eb614495</doaj_id><sourcerecordid>A748958682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-dc2b046560536c944ebfbeb774d968755a40901a7bd0d9b6cc9f107e01e25a9a3</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEog_4AyzQSGxgkeLr-LlCVVXKSJWQeKwtx7kZPCTxYDtV--_xzJTSQcgLW_Z3z7WPT1W9AnIGoMT7BFQJVhPa1EQ3VNTkSXUMTEJNQbCnj9ZH1UlKa0JAKsqfV0eNBElAs-NKXqbsR5v9tFrkaKfkot_kMOLChXEz4K3PHtPCuhhSWuD808a7kDG9qJ71dkj48n4-rb5_vPx28am-_ny1vDi_rh3XKtedoy1hggvCG-E0Y9j2LbZSsk4LJTm3jGgCVrYd6XQrnNM9EIkEkHKrbXNaLfe6XbBrs4nlrvHOBOvNbiPElbExezeg0T2XoHiZHGWOoOItQMM5tgIY07xofdhrbeZ2xM7hVF48HIgenkz-h1mFGwPFuIbppii8vVeI4deMKZvRJ4fDYCcMczJUbRtyIKqgb_5B12GOU_FqS_GtI1T-pVa2vMBPfSiN3VbUnEumNFdC0UKd_Ycqo8PRuzBh78v-QcG7g4LCZLzNKzunZJZfvxyydM_uvjhi_2AIELPNmdnnzJScmV3ODClFrx9b-VDyJ1jNb-J_yv4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815560527</pqid></control><display><type>article</type><title>Estimating transcriptome complexities across eukaryotes</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Titus-McQuillan, James E ; Nanni, Adalena V ; McIntyre, Lauren M ; Rogers, Rebekah L</creator><creatorcontrib>Titus-McQuillan, James E ; Nanni, Adalena V ; McIntyre, Lauren M ; Rogers, Rebekah L</creatorcontrib><description>Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable lack of correspondence" between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, we use a set of complexity metrics that allow for evaluating changes in complexity using TranD. We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as complexity varies. In this study, we define three metrics - TpG, EpT, and EpG- to quantify the transcriptome's complexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are biased towards low-complexity genes with few exons and few alternative transcripts. With our metric analyses, we are able to quantify changes in complexity across diverse lineages with greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as they lower complexity.</description><identifier>ISSN: 1471-2164</identifier><identifier>EISSN: 1471-2164</identifier><identifier>DOI: 10.1186/s12864-023-09326-0</identifier><identifier>PMID: 37170194</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Alternative Splicing ; Analysis ; Annotations ; Case studies ; Complexity ; Effective exon number ; Eukaryota - genetics ; Eukaryotes ; Evolution ; Evolution &amp; development ; Evolution, Molecular ; Evolutionary rates ; Exons ; Flowers &amp; plants ; Fungi ; Gene Expression Profiling ; Genes ; Genetic aspects ; Genome ; Genomes ; Genomics ; Health aspects ; Identification and classification ; Insects ; Novel genes ; Organisms ; OrthoDB ; Orthologs ; Phylogenetics ; Proteins ; RNA splicing ; Species comparisons ; Spliceosomes ; Splicing ; Transcriptome ; Transcriptome complexity ; Transcriptomes</subject><ispartof>BMC genomics, 2023-05, Vol.24 (1), p.254-20, Article 254</ispartof><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 BioMed Central Ltd.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-dc2b046560536c944ebfbeb774d968755a40901a7bd0d9b6cc9f107e01e25a9a3</citedby><cites>FETCH-LOGICAL-c598t-dc2b046560536c944ebfbeb774d968755a40901a7bd0d9b6cc9f107e01e25a9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173493/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2815560527?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37170194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Titus-McQuillan, James E</creatorcontrib><creatorcontrib>Nanni, Adalena V</creatorcontrib><creatorcontrib>McIntyre, Lauren M</creatorcontrib><creatorcontrib>Rogers, Rebekah L</creatorcontrib><title>Estimating transcriptome complexities across eukaryotes</title><title>BMC genomics</title><addtitle>BMC Genomics</addtitle><description>Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable lack of correspondence" between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, we use a set of complexity metrics that allow for evaluating changes in complexity using TranD. We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as complexity varies. In this study, we define three metrics - TpG, EpT, and EpG- to quantify the transcriptome's complexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are biased towards low-complexity genes with few exons and few alternative transcripts. With our metric analyses, we are able to quantify changes in complexity across diverse lineages with greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as they lower complexity.</description><subject>Alternative Splicing</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Case studies</subject><subject>Complexity</subject><subject>Effective exon number</subject><subject>Eukaryota - genetics</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolution, Molecular</subject><subject>Evolutionary rates</subject><subject>Exons</subject><subject>Flowers &amp; plants</subject><subject>Fungi</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Identification and classification</subject><subject>Insects</subject><subject>Novel genes</subject><subject>Organisms</subject><subject>OrthoDB</subject><subject>Orthologs</subject><subject>Phylogenetics</subject><subject>Proteins</subject><subject>RNA splicing</subject><subject>Species comparisons</subject><subject>Spliceosomes</subject><subject>Splicing</subject><subject>Transcriptome</subject><subject>Transcriptome complexity</subject><subject>Transcriptomes</subject><issn>1471-2164</issn><issn>1471-2164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEog_4AyzQSGxgkeLr-LlCVVXKSJWQeKwtx7kZPCTxYDtV--_xzJTSQcgLW_Z3z7WPT1W9AnIGoMT7BFQJVhPa1EQ3VNTkSXUMTEJNQbCnj9ZH1UlKa0JAKsqfV0eNBElAs-NKXqbsR5v9tFrkaKfkot_kMOLChXEz4K3PHtPCuhhSWuD808a7kDG9qJ71dkj48n4-rb5_vPx28am-_ny1vDi_rh3XKtedoy1hggvCG-E0Y9j2LbZSsk4LJTm3jGgCVrYd6XQrnNM9EIkEkHKrbXNaLfe6XbBrs4nlrvHOBOvNbiPElbExezeg0T2XoHiZHGWOoOItQMM5tgIY07xofdhrbeZ2xM7hVF48HIgenkz-h1mFGwPFuIbppii8vVeI4deMKZvRJ4fDYCcMczJUbRtyIKqgb_5B12GOU_FqS_GtI1T-pVa2vMBPfSiN3VbUnEumNFdC0UKd_Ycqo8PRuzBh78v-QcG7g4LCZLzNKzunZJZfvxyydM_uvjhi_2AIELPNmdnnzJScmV3ODClFrx9b-VDyJ1jNb-J_yv4</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Titus-McQuillan, James E</creator><creator>Nanni, Adalena V</creator><creator>McIntyre, Lauren M</creator><creator>Rogers, Rebekah L</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230511</creationdate><title>Estimating transcriptome complexities across eukaryotes</title><author>Titus-McQuillan, James E ; Nanni, Adalena V ; McIntyre, Lauren M ; Rogers, Rebekah L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-dc2b046560536c944ebfbeb774d968755a40901a7bd0d9b6cc9f107e01e25a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative Splicing</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Case studies</topic><topic>Complexity</topic><topic>Effective exon number</topic><topic>Eukaryota - genetics</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolution, Molecular</topic><topic>Evolutionary rates</topic><topic>Exons</topic><topic>Flowers &amp; plants</topic><topic>Fungi</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Identification and classification</topic><topic>Insects</topic><topic>Novel genes</topic><topic>Organisms</topic><topic>OrthoDB</topic><topic>Orthologs</topic><topic>Phylogenetics</topic><topic>Proteins</topic><topic>RNA splicing</topic><topic>Species comparisons</topic><topic>Spliceosomes</topic><topic>Splicing</topic><topic>Transcriptome</topic><topic>Transcriptome complexity</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Titus-McQuillan, James E</creatorcontrib><creatorcontrib>Nanni, Adalena V</creatorcontrib><creatorcontrib>McIntyre, Lauren M</creatorcontrib><creatorcontrib>Rogers, Rebekah L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Titus-McQuillan, James E</au><au>Nanni, Adalena V</au><au>McIntyre, Lauren M</au><au>Rogers, Rebekah L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating transcriptome complexities across eukaryotes</atitle><jtitle>BMC genomics</jtitle><addtitle>BMC Genomics</addtitle><date>2023-05-11</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>254</spage><epage>20</epage><pages>254-20</pages><artnum>254</artnum><issn>1471-2164</issn><eissn>1471-2164</eissn><abstract>Genomic complexity is a growing field of evolution, with case studies for comparative evolutionary analyses in model and emerging non-model systems. Understanding complexity and the functional components of the genome is an untapped wealth of knowledge ripe for exploration. With the "remarkable lack of correspondence" between genome size and complexity, there needs to be a way to quantify complexity across organisms. In this study, we use a set of complexity metrics that allow for evaluating changes in complexity using TranD. We ascertain if complexity is increasing or decreasing across transcriptomes and at what structural level, as complexity varies. In this study, we define three metrics - TpG, EpT, and EpG- to quantify the transcriptome's complexity that encapsulates the dynamics of alternative splicing. Here we compare complexity metrics across 1) whole genome annotations, 2) a filtered subset of orthologs, and 3) novel genes to elucidate the impacts of orthologs and novel genes in transcript model analysis. Effective Exon Number (EEN) issued to compare the distribution of exon sizes within transcripts against random expectations of uniform exon placement. EEN accounts for differences in exon size, which is important because novel gene differences in complexity for orthologs and whole-transcriptome analyses are biased towards low-complexity genes with few exons and few alternative transcripts. With our metric analyses, we are able to quantify changes in complexity across diverse lineages with greater precision and accuracy than previous cross-species comparisons under ortholog conditioning. These analyses represent a step toward whole-transcriptome analysis in the emerging field of non-model evolutionary genomics, with key insights for evolutionary inference of complexity changes on deep timescales across the tree of life. We suggest a means to quantify biases generated in ortholog calling and correct complexity analysis for lineage-specific effects. With these metrics, we directly assay the quantitative properties of newly formed lineage-specific genes as they lower complexity.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>37170194</pmid><doi>10.1186/s12864-023-09326-0</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2164
ispartof BMC genomics, 2023-05, Vol.24 (1), p.254-20, Article 254
issn 1471-2164
1471-2164
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9f571859f5c24c0e85b11355eb614495
source Publicly Available Content Database; PubMed Central
subjects Alternative Splicing
Analysis
Annotations
Case studies
Complexity
Effective exon number
Eukaryota - genetics
Eukaryotes
Evolution
Evolution & development
Evolution, Molecular
Evolutionary rates
Exons
Flowers & plants
Fungi
Gene Expression Profiling
Genes
Genetic aspects
Genome
Genomes
Genomics
Health aspects
Identification and classification
Insects
Novel genes
Organisms
OrthoDB
Orthologs
Phylogenetics
Proteins
RNA splicing
Species comparisons
Spliceosomes
Splicing
Transcriptome
Transcriptome complexity
Transcriptomes
title Estimating transcriptome complexities across eukaryotes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20transcriptome%20complexities%20across%20eukaryotes&rft.jtitle=BMC%20genomics&rft.au=Titus-McQuillan,%20James%20E&rft.date=2023-05-11&rft.volume=24&rft.issue=1&rft.spage=254&rft.epage=20&rft.pages=254-20&rft.artnum=254&rft.issn=1471-2164&rft.eissn=1471-2164&rft_id=info:doi/10.1186/s12864-023-09326-0&rft_dat=%3Cgale_doaj_%3EA748958682%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c598t-dc2b046560536c944ebfbeb774d968755a40901a7bd0d9b6cc9f107e01e25a9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815560527&rft_id=info:pmid/37170194&rft_galeid=A748958682&rfr_iscdi=true