Loading…

Sharper Sub-Weibull Concentrations

Constant-specified and exponential concentration inequalities play an essential role in the finite-sample theory of machine learning and high-dimensional statistics area. We obtain sharper and constants-specified concentration inequalities for the sum of independent sub-Weibull random variables, whi...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-07, Vol.10 (13), p.2252
Main Authors: Zhang, Huiming, Wei, Haoyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-a7a3926fb8a28fa71a1fc1e46c0c7e03f63fd50eff04f01b7fb41869f9718ba83
cites cdi_FETCH-LOGICAL-c367t-a7a3926fb8a28fa71a1fc1e46c0c7e03f63fd50eff04f01b7fb41869f9718ba83
container_end_page
container_issue 13
container_start_page 2252
container_title Mathematics (Basel)
container_volume 10
creator Zhang, Huiming
Wei, Haoyu
description Constant-specified and exponential concentration inequalities play an essential role in the finite-sample theory of machine learning and high-dimensional statistics area. We obtain sharper and constants-specified concentration inequalities for the sum of independent sub-Weibull random variables, which leads to a mixture of two tails: sub-Gaussian for small deviations and sub-Weibull for large deviations from the mean. These bounds are new and improve existing bounds with sharper constants. In addition, a new sub-Weibull parameter is also proposed, which enables recovering the tight concentration inequality for a random variable (vector). For statistical applications, we give an ℓ2-error of estimated coefficients in negative binomial regressions when the heavy-tailed covariates are sub-Weibull distributed with sparse structures, which is a new result for negative binomial regressions. In applying random matrices, we derive non-asymptotic versions of Bai-Yin’s theorem for sub-Weibull entries with exponential tail bounds. Finally, by demonstrating a sub-Weibull confidence region for a log-truncated Z-estimator without the second-moment condition, we discuss and define the sub-Weibull type robust estimator for independent observations {Xi}i=1n without exponential-moment conditions.
doi_str_mv 10.3390/math10132252
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f5b790bee52471db47966cc77cef37b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9f5b790bee52471db47966cc77cef37b</doaj_id><sourcerecordid>2686067410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a7a3926fb8a28fa71a1fc1e46c0c7e03f63fd50eff04f01b7fb41869f9718ba83</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGpv_oCiV1fzsZtJjlL8KBQ8VPEYkmzGbtluarJ78N-7WpHOZYaZl-cdXkIuGb0VQtO7ne03jDLBecVPyIRzDgWMh9Oj-ZzMct7SsTQTqtQTcrXe2LQPab4eXPEeGje07XwROx-6Ptm-iV2-IGdo2xxmf31K3h4fXhfPxerlabm4XxVeSOgLC1ZoLtEpyxVaYJahZ6GUnnoIVKAUWFc0INISKXOArmRKatTAlLNKTMnywK2j3Zp9anY2fZloG_O7iOnD2NQ3vg1GY-VAUxdCxUtgtStBS-k9gA8owI2s6wNrn-LnEHJvtnFI3fi-4VJJKqFkdFTdHFQ-xZxTwH9XRs1PqOY4VPENN7loeA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686067410</pqid></control><display><type>article</type><title>Sharper Sub-Weibull Concentrations</title><source>Publicly Available Content Database</source><creator>Zhang, Huiming ; Wei, Haoyu</creator><creatorcontrib>Zhang, Huiming ; Wei, Haoyu</creatorcontrib><description>Constant-specified and exponential concentration inequalities play an essential role in the finite-sample theory of machine learning and high-dimensional statistics area. We obtain sharper and constants-specified concentration inequalities for the sum of independent sub-Weibull random variables, which leads to a mixture of two tails: sub-Gaussian for small deviations and sub-Weibull for large deviations from the mean. These bounds are new and improve existing bounds with sharper constants. In addition, a new sub-Weibull parameter is also proposed, which enables recovering the tight concentration inequality for a random variable (vector). For statistical applications, we give an ℓ2-error of estimated coefficients in negative binomial regressions when the heavy-tailed covariates are sub-Weibull distributed with sparse structures, which is a new result for negative binomial regressions. In applying random matrices, we derive non-asymptotic versions of Bai-Yin’s theorem for sub-Weibull entries with exponential tail bounds. Finally, by demonstrating a sub-Weibull confidence region for a log-truncated Z-estimator without the second-moment condition, we discuss and define the sub-Weibull type robust estimator for independent observations {Xi}i=1n without exponential-moment conditions.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10132252</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Constants ; constants-specified concentration inequalities ; Deviation ; Eigenvalues ; exponential tail bounds ; Food science ; heavy-tailed random variables ; Independent variables ; Inequalities ; Inequality ; lower bounds on the least singular value ; Machine learning ; Norms ; Random variables ; sub-Weibull parameter</subject><ispartof>Mathematics (Basel), 2022-07, Vol.10 (13), p.2252</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a7a3926fb8a28fa71a1fc1e46c0c7e03f63fd50eff04f01b7fb41869f9718ba83</citedby><cites>FETCH-LOGICAL-c367t-a7a3926fb8a28fa71a1fc1e46c0c7e03f63fd50eff04f01b7fb41869f9718ba83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2686067410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2686067410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Zhang, Huiming</creatorcontrib><creatorcontrib>Wei, Haoyu</creatorcontrib><title>Sharper Sub-Weibull Concentrations</title><title>Mathematics (Basel)</title><description>Constant-specified and exponential concentration inequalities play an essential role in the finite-sample theory of machine learning and high-dimensional statistics area. We obtain sharper and constants-specified concentration inequalities for the sum of independent sub-Weibull random variables, which leads to a mixture of two tails: sub-Gaussian for small deviations and sub-Weibull for large deviations from the mean. These bounds are new and improve existing bounds with sharper constants. In addition, a new sub-Weibull parameter is also proposed, which enables recovering the tight concentration inequality for a random variable (vector). For statistical applications, we give an ℓ2-error of estimated coefficients in negative binomial regressions when the heavy-tailed covariates are sub-Weibull distributed with sparse structures, which is a new result for negative binomial regressions. In applying random matrices, we derive non-asymptotic versions of Bai-Yin’s theorem for sub-Weibull entries with exponential tail bounds. Finally, by demonstrating a sub-Weibull confidence region for a log-truncated Z-estimator without the second-moment condition, we discuss and define the sub-Weibull type robust estimator for independent observations {Xi}i=1n without exponential-moment conditions.</description><subject>Constants</subject><subject>constants-specified concentration inequalities</subject><subject>Deviation</subject><subject>Eigenvalues</subject><subject>exponential tail bounds</subject><subject>Food science</subject><subject>heavy-tailed random variables</subject><subject>Independent variables</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>lower bounds on the least singular value</subject><subject>Machine learning</subject><subject>Norms</subject><subject>Random variables</subject><subject>sub-Weibull parameter</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGpv_oCiV1fzsZtJjlL8KBQ8VPEYkmzGbtluarJ78N-7WpHOZYaZl-cdXkIuGb0VQtO7ne03jDLBecVPyIRzDgWMh9Oj-ZzMct7SsTQTqtQTcrXe2LQPab4eXPEeGje07XwROx-6Ptm-iV2-IGdo2xxmf31K3h4fXhfPxerlabm4XxVeSOgLC1ZoLtEpyxVaYJahZ6GUnnoIVKAUWFc0INISKXOArmRKatTAlLNKTMnywK2j3Zp9anY2fZloG_O7iOnD2NQ3vg1GY-VAUxdCxUtgtStBS-k9gA8owI2s6wNrn-LnEHJvtnFI3fi-4VJJKqFkdFTdHFQ-xZxTwH9XRs1PqOY4VPENN7loeA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Zhang, Huiming</creator><creator>Wei, Haoyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20220701</creationdate><title>Sharper Sub-Weibull Concentrations</title><author>Zhang, Huiming ; Wei, Haoyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a7a3926fb8a28fa71a1fc1e46c0c7e03f63fd50eff04f01b7fb41869f9718ba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Constants</topic><topic>constants-specified concentration inequalities</topic><topic>Deviation</topic><topic>Eigenvalues</topic><topic>exponential tail bounds</topic><topic>Food science</topic><topic>heavy-tailed random variables</topic><topic>Independent variables</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>lower bounds on the least singular value</topic><topic>Machine learning</topic><topic>Norms</topic><topic>Random variables</topic><topic>sub-Weibull parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huiming</creatorcontrib><creatorcontrib>Wei, Haoyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huiming</au><au>Wei, Haoyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharper Sub-Weibull Concentrations</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>10</volume><issue>13</issue><spage>2252</spage><pages>2252-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Constant-specified and exponential concentration inequalities play an essential role in the finite-sample theory of machine learning and high-dimensional statistics area. We obtain sharper and constants-specified concentration inequalities for the sum of independent sub-Weibull random variables, which leads to a mixture of two tails: sub-Gaussian for small deviations and sub-Weibull for large deviations from the mean. These bounds are new and improve existing bounds with sharper constants. In addition, a new sub-Weibull parameter is also proposed, which enables recovering the tight concentration inequality for a random variable (vector). For statistical applications, we give an ℓ2-error of estimated coefficients in negative binomial regressions when the heavy-tailed covariates are sub-Weibull distributed with sparse structures, which is a new result for negative binomial regressions. In applying random matrices, we derive non-asymptotic versions of Bai-Yin’s theorem for sub-Weibull entries with exponential tail bounds. Finally, by demonstrating a sub-Weibull confidence region for a log-truncated Z-estimator without the second-moment condition, we discuss and define the sub-Weibull type robust estimator for independent observations {Xi}i=1n without exponential-moment conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10132252</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2022-07, Vol.10 (13), p.2252
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9f5b790bee52471db47966cc77cef37b
source Publicly Available Content Database
subjects Constants
constants-specified concentration inequalities
Deviation
Eigenvalues
exponential tail bounds
Food science
heavy-tailed random variables
Independent variables
Inequalities
Inequality
lower bounds on the least singular value
Machine learning
Norms
Random variables
sub-Weibull parameter
title Sharper Sub-Weibull Concentrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharper%20Sub-Weibull%20Concentrations&rft.jtitle=Mathematics%20(Basel)&rft.au=Zhang,%20Huiming&rft.date=2022-07-01&rft.volume=10&rft.issue=13&rft.spage=2252&rft.pages=2252-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10132252&rft_dat=%3Cproquest_doaj_%3E2686067410%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-a7a3926fb8a28fa71a1fc1e46c0c7e03f63fd50eff04f01b7fb41869f9718ba83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2686067410&rft_id=info:pmid/&rfr_iscdi=true