Loading…

Analysis of small RNA changes in different Brassica napus synthetic allopolyploids

Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA seque...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) CA), 2019-09, Vol.7, p.e7621-e7621, Article e7621
Main Authors: Wei, Yunxiao, Li, Fei, Zhang, Shujiang, Zhang, Shifan, Zhang, Hui, Sun, Rifei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for explaining the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective between small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.7621