Loading…
Reducing ether lipids improves Drosophila overnutrition-associated pathophysiology phenotypes via a switch from lipid storage to beta-oxidation
High-calorie diets increase the risk of developing obesity, cardiovascular disease, type-two diabetes (T2D), and other comorbidities. These “overnutrition” diets also promote the accumulation of a variety of harmful lipids in the heart and other peripheral organs, known as lipotoxicity. However, the...
Saved in:
Published in: | Scientific reports 2022-07, Vol.12 (1), p.13021-13021, Article 13021 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-calorie diets increase the risk of developing obesity, cardiovascular disease, type-two diabetes (T2D), and other comorbidities. These “overnutrition” diets also promote the accumulation of a variety of harmful lipids in the heart and other peripheral organs, known as lipotoxicity. However, the mechanisms underlying lipotoxicity and its influence on pathophysiology remain unknown. Our study uses genetics to identify the role of ether lipids, a class of potential lipotoxins, in a Drosophila model of overnutrition. A high-sugar diet (HSD) increases ether lipids and produces T2D-like pathophysiology phenotypes, including obesity, insulin resistance, and cardiac failure. Therefore, we targeted ether lipid biosynthesis through the enzyme dihydroxyacetonephosphate acyltransferase (encoded by the gene
DHAPAT
). We found that reducing
DHAPAT
in the fat body improved TAG and glucose homeostasis, cardiac function, respiration, and insulin signaling in flies fed a HSD. The reduction of
DHAPAT
may cause a switch in molecular signaling from lipogenesis to fatty acid oxidation via activation of a PPARα-like receptor, as bezafibrate produced similar improvements in HS-fed flies. Taken together, our findings suggest that ether lipids may be lipotoxins that reduce fitness during overnutrition. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-16870-4 |