Loading…

Convolved substructure: analytically decorrelating jet substructure observables

A bstract A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2018-05, Vol.2018 (5), p.1-26, Article 2
Main Authors: Moult, Ian, Nachman, Benjamin, Neill, Duff
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3
cites cdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3
container_end_page 26
container_issue 5
container_start_page 1
container_title The journal of high energy physics
container_volume 2018
creator Moult, Ian
Nachman, Benjamin
Neill, Duff
description A bstract A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the D 2 observable and perform an illustrative case study using a search for a light hadronically decaying Z ′. We find that the CSS approach completely decorrelates the D 2 observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.
doi_str_mv 10.1007/JHEP05(2018)002
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f8ed30c2b7840729f53d5106e4c27c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9f8ed30c2b7840729f53d5106e4c27c2</doaj_id><sourcerecordid>2034153577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</originalsourceid><addsrcrecordid>eNp1kTtP7DAQhSN0keACNW0EDbdYGDt2HNOhFU8hQQG15UwmS1YhBttZaf_9NQTxKKhsj75z5sgny_YZHDMAdXJzdX4P8ogDq_4B8I1smwHXs0oo_efbfSv7G8ISgEmmYTu7m7th5foVNXkY6xD9iHH0dJrbwfbr2KHt-3XeEDrvqbexGxb5kuIPOHd1IL-ydU9hN9tsbR9o7-PcyR4vzh_mV7Pbu8vr-dntDIUQcYa8FqAYs3XKwXSpJEMOspB1xUsuWi1KVdWNSu8WNemCa0VaIZYtCimw2MmuJ9_G2aV58d2z9WvjbGfeB84vjPUpfk9GtxU1BaSVqkpLuW5l0UgGJQnkCnnyOpi8XIidCdhFwid0w0AYDROVBF0k6HCCXrx7HSlEs3SjT58UDIdCsJRdqUSdTBR6F4Kn9jMaA_NWk5lqMm81mVRTUsCkCIkcFuS_fH-T_AclDZOP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034153577</pqid></control><display><type>article</type><title>Convolved substructure: analytically decorrelating jet substructure observables</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Moult, Ian ; Nachman, Benjamin ; Neill, Duff</creator><creatorcontrib>Moult, Ian ; Nachman, Benjamin ; Neill, Duff ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>A bstract A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the D 2 observable and perform an illustrative case study using a search for a light hadronically decaying Z ′. We find that the CSS approach completely decorrelates the D 2 observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2018)002</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Convolution ; Elementary Particles ; High energy physics ; Jets ; Jets QCD ; Phenomenology ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QCD Phenomenology ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Shape functions ; String Theory</subject><ispartof>The journal of high energy physics, 2018-05, Vol.2018 (5), p.1-26, Article 2</ispartof><rights>The Author(s) 2018</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</citedby><cites>FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2034153577/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2034153577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74897</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1485093$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moult, Ian</creatorcontrib><creatorcontrib>Nachman, Benjamin</creatorcontrib><creatorcontrib>Neill, Duff</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Convolved substructure: analytically decorrelating jet substructure observables</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the D 2 observable and perform an illustrative case study using a search for a light hadronically decaying Z ′. We find that the CSS approach completely decorrelates the D 2 observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.</description><subject>Classical and Quantum Gravitation</subject><subject>Convolution</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Jets</subject><subject>Jets QCD</subject><subject>Phenomenology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QCD Phenomenology</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Shape functions</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kTtP7DAQhSN0keACNW0EDbdYGDt2HNOhFU8hQQG15UwmS1YhBttZaf_9NQTxKKhsj75z5sgny_YZHDMAdXJzdX4P8ogDq_4B8I1smwHXs0oo_efbfSv7G8ISgEmmYTu7m7th5foVNXkY6xD9iHH0dJrbwfbr2KHt-3XeEDrvqbexGxb5kuIPOHd1IL-ydU9hN9tsbR9o7-PcyR4vzh_mV7Pbu8vr-dntDIUQcYa8FqAYs3XKwXSpJEMOspB1xUsuWi1KVdWNSu8WNemCa0VaIZYtCimw2MmuJ9_G2aV58d2z9WvjbGfeB84vjPUpfk9GtxU1BaSVqkpLuW5l0UgGJQnkCnnyOpi8XIidCdhFwid0w0AYDROVBF0k6HCCXrx7HSlEs3SjT58UDIdCsJRdqUSdTBR6F4Kn9jMaA_NWk5lqMm81mVRTUsCkCIkcFuS_fH-T_AclDZOP</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Moult, Ian</creator><creator>Nachman, Benjamin</creator><creator>Neill, Duff</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Berlin</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20180501</creationdate><title>Convolved substructure: analytically decorrelating jet substructure observables</title><author>Moult, Ian ; Nachman, Benjamin ; Neill, Duff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Convolution</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Jets</topic><topic>Jets QCD</topic><topic>Phenomenology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QCD Phenomenology</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Shape functions</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moult, Ian</creatorcontrib><creatorcontrib>Nachman, Benjamin</creatorcontrib><creatorcontrib>Neill, Duff</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moult, Ian</au><au>Nachman, Benjamin</au><au>Neill, Duff</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolved substructure: analytically decorrelating jet substructure observables</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>2018</volume><issue>5</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>2</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the D 2 observable and perform an illustrative case study using a search for a light hadronically decaying Z ′. We find that the CSS approach completely decorrelates the D 2 observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP05(2018)002</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2018-05, Vol.2018 (5), p.1-26, Article 2
issn 1029-8479
1029-8479
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9f8ed30c2b7840729f53d5106e4c27c2
source Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest)
subjects Classical and Quantum Gravitation
Convolution
Elementary Particles
High energy physics
Jets
Jets QCD
Phenomenology
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
QCD Phenomenology
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Shape functions
String Theory
title Convolved substructure: analytically decorrelating jet substructure observables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolved%20substructure:%20analytically%20decorrelating%20jet%20substructure%20observables&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Moult,%20Ian&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-05-01&rft.volume=2018&rft.issue=5&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=2&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2018)002&rft_dat=%3Cproquest_doaj_%3E2034153577%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2034153577&rft_id=info:pmid/&rfr_iscdi=true