Loading…
Convolved substructure: analytically decorrelating jet substructure observables
A bstract A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the...
Saved in:
Published in: | The journal of high energy physics 2018-05, Vol.2018 (5), p.1-26, Article 2 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3 |
container_end_page | 26 |
container_issue | 5 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2018 |
creator | Moult, Ian Nachman, Benjamin Neill, Duff |
description | A
bstract
A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the
D
2
observable and perform an illustrative case study using a search for a light hadronically decaying
Z
′. We find that the CSS approach completely decorrelates the
D
2
observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance. |
doi_str_mv | 10.1007/JHEP05(2018)002 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9f8ed30c2b7840729f53d5106e4c27c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9f8ed30c2b7840729f53d5106e4c27c2</doaj_id><sourcerecordid>2034153577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</originalsourceid><addsrcrecordid>eNp1kTtP7DAQhSN0keACNW0EDbdYGDt2HNOhFU8hQQG15UwmS1YhBttZaf_9NQTxKKhsj75z5sgny_YZHDMAdXJzdX4P8ogDq_4B8I1smwHXs0oo_efbfSv7G8ISgEmmYTu7m7th5foVNXkY6xD9iHH0dJrbwfbr2KHt-3XeEDrvqbexGxb5kuIPOHd1IL-ydU9hN9tsbR9o7-PcyR4vzh_mV7Pbu8vr-dntDIUQcYa8FqAYs3XKwXSpJEMOspB1xUsuWi1KVdWNSu8WNemCa0VaIZYtCimw2MmuJ9_G2aV58d2z9WvjbGfeB84vjPUpfk9GtxU1BaSVqkpLuW5l0UgGJQnkCnnyOpi8XIidCdhFwid0w0AYDROVBF0k6HCCXrx7HSlEs3SjT58UDIdCsJRdqUSdTBR6F4Kn9jMaA_NWk5lqMm81mVRTUsCkCIkcFuS_fH-T_AclDZOP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034153577</pqid></control><display><type>article</type><title>Convolved substructure: analytically decorrelating jet substructure observables</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><creator>Moult, Ian ; Nachman, Benjamin ; Neill, Duff</creator><creatorcontrib>Moult, Ian ; Nachman, Benjamin ; Neill, Duff ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>A
bstract
A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the
D
2
observable and perform an illustrative case study using a search for a light hadronically decaying
Z
′. We find that the CSS approach completely decorrelates the
D
2
observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2018)002</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Convolution ; Elementary Particles ; High energy physics ; Jets ; Jets QCD ; Phenomenology ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; QCD Phenomenology ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Shape functions ; String Theory</subject><ispartof>The journal of high energy physics, 2018-05, Vol.2018 (5), p.1-26, Article 2</ispartof><rights>The Author(s) 2018</rights><rights>Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</citedby><cites>FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2034153577/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2034153577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74897</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1485093$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moult, Ian</creatorcontrib><creatorcontrib>Nachman, Benjamin</creatorcontrib><creatorcontrib>Neill, Duff</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Convolved substructure: analytically decorrelating jet substructure observables</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the
D
2
observable and perform an illustrative case study using a search for a light hadronically decaying
Z
′. We find that the CSS approach completely decorrelates the
D
2
observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.</description><subject>Classical and Quantum Gravitation</subject><subject>Convolution</subject><subject>Elementary Particles</subject><subject>High energy physics</subject><subject>Jets</subject><subject>Jets QCD</subject><subject>Phenomenology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>QCD Phenomenology</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Shape functions</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kTtP7DAQhSN0keACNW0EDbdYGDt2HNOhFU8hQQG15UwmS1YhBttZaf_9NQTxKKhsj75z5sgny_YZHDMAdXJzdX4P8ogDq_4B8I1smwHXs0oo_efbfSv7G8ISgEmmYTu7m7th5foVNXkY6xD9iHH0dJrbwfbr2KHt-3XeEDrvqbexGxb5kuIPOHd1IL-ydU9hN9tsbR9o7-PcyR4vzh_mV7Pbu8vr-dntDIUQcYa8FqAYs3XKwXSpJEMOspB1xUsuWi1KVdWNSu8WNemCa0VaIZYtCimw2MmuJ9_G2aV58d2z9WvjbGfeB84vjPUpfk9GtxU1BaSVqkpLuW5l0UgGJQnkCnnyOpi8XIidCdhFwid0w0AYDROVBF0k6HCCXrx7HSlEs3SjT58UDIdCsJRdqUSdTBR6F4Kn9jMaA_NWk5lqMm81mVRTUsCkCIkcFuS_fH-T_AclDZOP</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Moult, Ian</creator><creator>Nachman, Benjamin</creator><creator>Neill, Duff</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Berlin</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20180501</creationdate><title>Convolved substructure: analytically decorrelating jet substructure observables</title><author>Moult, Ian ; Nachman, Benjamin ; Neill, Duff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Convolution</topic><topic>Elementary Particles</topic><topic>High energy physics</topic><topic>Jets</topic><topic>Jets QCD</topic><topic>Phenomenology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>QCD Phenomenology</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Shape functions</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moult, Ian</creatorcontrib><creatorcontrib>Nachman, Benjamin</creatorcontrib><creatorcontrib>Neill, Duff</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moult, Ian</au><au>Nachman, Benjamin</au><au>Neill, Duff</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolved substructure: analytically decorrelating jet substructure observables</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>2018</volume><issue>5</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>2</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
A number of recent applications of jet substructure, in particular searches for light new particles, require substructure observables that are decorrelated with the jet mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which uses a theoretical understanding of the observable to decorrelate the complete shape of its distribution. This decorrelation is performed by convolution with a shape function whose parameters and mass dependence are derived analytically. We consider in detail the case of the
D
2
observable and perform an illustrative case study using a search for a light hadronically decaying
Z
′. We find that the CSS approach completely decorrelates the
D
2
observable over a wide range of masses. Our approach highlights the importance of improving the theoretical understanding of jet substructure observables to exploit increasingly subtle features for performance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP05(2018)002</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2018-05, Vol.2018 (5), p.1-26, Article 2 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9f8ed30c2b7840729f53d5106e4c27c2 |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest) |
subjects | Classical and Quantum Gravitation Convolution Elementary Particles High energy physics Jets Jets QCD Phenomenology Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS QCD Phenomenology Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Shape functions String Theory |
title | Convolved substructure: analytically decorrelating jet substructure observables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolved%20substructure:%20analytically%20decorrelating%20jet%20substructure%20observables&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Moult,%20Ian&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-05-01&rft.volume=2018&rft.issue=5&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=2&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2018)002&rft_dat=%3Cproquest_doaj_%3E2034153577%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-c2b40711ab151196751c20535b82624f94678bd75b8fc9e93297e97cc6fc454c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2034153577&rft_id=info:pmid/&rfr_iscdi=true |