Loading…

An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem

The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimizatio...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computational applications 2023-01, Vol.28 (1), p.6
Main Authors: Ramos-Figueroa, Octavio, Quiroz-Castellanos, Marcela, Mezura-Montes, Efrén, Cruz-Ramírez, Nicandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c291t-c73d2ee69dd86e460459a6dea2a96e7b3771e0dd6b59e77239a79bf15962d12b3
container_end_page
container_issue 1
container_start_page 6
container_title Mathematical and computational applications
container_volume 28
creator Ramos-Figueroa, Octavio
Quiroz-Castellanos, Marcela
Mezura-Montes, Efrén
Cruz-Ramírez, Nicandro
description The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, although the crossover and mutation operators are the most recurrent. This article aims to highlight the impact that a well-designed operator can have on the final performance of a GGA. We present a comparative experimental study of different mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in a set of machines. The proposed approach is focused on identifying the strategies involved in the mutation operations and adapting them to the characteristics of the studied problem. As a result of this experimental study, knowledge of the problem-domain was gained and used to design a new mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art GGA performance considerably improves by replacing the original mutation operator with the new one, achieving better results, with an improvement rate of 52%.
doi_str_mv 10.3390/mca28010006
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9fa93623326142ea881fcd074cd53113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752158044</galeid><doaj_id>oai_doaj_org_article_9fa93623326142ea881fcd074cd53113</doaj_id><sourcerecordid>A752158044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-c73d2ee69dd86e460459a6dea2a96e7b3771e0dd6b59e77239a79bf15962d12b3</originalsourceid><addsrcrecordid>eNpNkU9rHDEMxYfSQkOaU7-Aoccyqf_M2OPjEtI0kJBAmrPR2PKuF6-99Xig-fZ1uqUEHSTEez-eUNd9ZvRSCE2_HSzwiTJKqXzXnXGuVT-pQb1_M3_sLpZl3xScDZRTetbtN4lc_z5iCQdMFSJ5qqt7IdmTm5LXY0hbcr9WqCEn8tBkUHNZiM-F1B2S51QwQkVHHqFAjBj7e7C7kJA82R26Nb4CHkueIx4-dR88xAUv_vXz7vn79c-rH_3dw83t1eaut1yz2lslHEeU2rlJ4iDpMGqQDoGDlqhmoRRD6pycR41KcaFB6dmzUUvuGJ_FeXd74roMe3Nsl0F5MRmC-bvIZWug1GAjGu1BC8mF4JINHGGamLeOqsG6UTAmGuvLiXUs-deKSzX7vJbU4huulB6ZUEw21eVJtYUGDcnnWsC2cngINif0oe03auRsnOgwNMPXk8GWvCwF_f-YjJrXZ5o3zxR_ADzqkL8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779513716</pqid></control><display><type>article</type><title>An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem</title><source>Publicly Available Content (ProQuest)</source><source>EZB Electronic Journals Library</source><creator>Ramos-Figueroa, Octavio ; Quiroz-Castellanos, Marcela ; Mezura-Montes, Efrén ; Cruz-Ramírez, Nicandro</creator><creatorcontrib>Ramos-Figueroa, Octavio ; Quiroz-Castellanos, Marcela ; Mezura-Montes, Efrén ; Cruz-Ramírez, Nicandro</creatorcontrib><description>The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, although the crossover and mutation operators are the most recurrent. This article aims to highlight the impact that a well-designed operator can have on the final performance of a GGA. We present a comparative experimental study of different mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in a set of machines. The proposed approach is focused on identifying the strategies involved in the mutation operations and adapting them to the characteristics of the studied problem. As a result of this experimental study, knowledge of the problem-domain was gained and used to design a new mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art GGA performance considerably improves by replacing the original mutation operator with the new one, achieving better results, with an improvement rate of 52%.</description><identifier>ISSN: 2297-8747</identifier><identifier>ISSN: 1300-686X</identifier><identifier>EISSN: 2297-8747</identifier><identifier>DOI: 10.3390/mca28010006</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Combinatorial analysis ; Comparative analysis ; Design ; Employment ; Genetic algorithms ; Genetic engineering ; grouping genetic algorithm ; grouping mutation operator ; grouping problem ; Heuristic methods ; Mutation ; Operators ; Optimization ; Optimization algorithms ; Scheduling ; Sequential scheduling ; unrelated parallel-machine scheduling</subject><ispartof>Mathematical and computational applications, 2023-01, Vol.28 (1), p.6</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-c73d2ee69dd86e460459a6dea2a96e7b3771e0dd6b59e77239a79bf15962d12b3</cites><orcidid>0000-0002-1170-2951 ; 0000-0002-1565-5267 ; 0000-0001-8078-9491 ; 0000-0002-0708-9875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779513716/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779513716?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Ramos-Figueroa, Octavio</creatorcontrib><creatorcontrib>Quiroz-Castellanos, Marcela</creatorcontrib><creatorcontrib>Mezura-Montes, Efrén</creatorcontrib><creatorcontrib>Cruz-Ramírez, Nicandro</creatorcontrib><title>An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem</title><title>Mathematical and computational applications</title><description>The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, although the crossover and mutation operators are the most recurrent. This article aims to highlight the impact that a well-designed operator can have on the final performance of a GGA. We present a comparative experimental study of different mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in a set of machines. The proposed approach is focused on identifying the strategies involved in the mutation operations and adapting them to the characteristics of the studied problem. As a result of this experimental study, knowledge of the problem-domain was gained and used to design a new mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art GGA performance considerably improves by replacing the original mutation operator with the new one, achieving better results, with an improvement rate of 52%.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Comparative analysis</subject><subject>Design</subject><subject>Employment</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>grouping genetic algorithm</subject><subject>grouping mutation operator</subject><subject>grouping problem</subject><subject>Heuristic methods</subject><subject>Mutation</subject><subject>Operators</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Scheduling</subject><subject>Sequential scheduling</subject><subject>unrelated parallel-machine scheduling</subject><issn>2297-8747</issn><issn>1300-686X</issn><issn>2297-8747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9rHDEMxYfSQkOaU7-Aoccyqf_M2OPjEtI0kJBAmrPR2PKuF6-99Xig-fZ1uqUEHSTEez-eUNd9ZvRSCE2_HSzwiTJKqXzXnXGuVT-pQb1_M3_sLpZl3xScDZRTetbtN4lc_z5iCQdMFSJ5qqt7IdmTm5LXY0hbcr9WqCEn8tBkUHNZiM-F1B2S51QwQkVHHqFAjBj7e7C7kJA82R26Nb4CHkueIx4-dR88xAUv_vXz7vn79c-rH_3dw83t1eaut1yz2lslHEeU2rlJ4iDpMGqQDoGDlqhmoRRD6pycR41KcaFB6dmzUUvuGJ_FeXd74roMe3Nsl0F5MRmC-bvIZWug1GAjGu1BC8mF4JINHGGamLeOqsG6UTAmGuvLiXUs-deKSzX7vJbU4huulB6ZUEw21eVJtYUGDcnnWsC2cngINif0oe03auRsnOgwNMPXk8GWvCwF_f-YjJrXZ5o3zxR_ADzqkL8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ramos-Figueroa, Octavio</creator><creator>Quiroz-Castellanos, Marcela</creator><creator>Mezura-Montes, Efrén</creator><creator>Cruz-Ramírez, Nicandro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1170-2951</orcidid><orcidid>https://orcid.org/0000-0002-1565-5267</orcidid><orcidid>https://orcid.org/0000-0001-8078-9491</orcidid><orcidid>https://orcid.org/0000-0002-0708-9875</orcidid></search><sort><creationdate>20230101</creationdate><title>An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem</title><author>Ramos-Figueroa, Octavio ; Quiroz-Castellanos, Marcela ; Mezura-Montes, Efrén ; Cruz-Ramírez, Nicandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-c73d2ee69dd86e460459a6dea2a96e7b3771e0dd6b59e77239a79bf15962d12b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Comparative analysis</topic><topic>Design</topic><topic>Employment</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>grouping genetic algorithm</topic><topic>grouping mutation operator</topic><topic>grouping problem</topic><topic>Heuristic methods</topic><topic>Mutation</topic><topic>Operators</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Scheduling</topic><topic>Sequential scheduling</topic><topic>unrelated parallel-machine scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Figueroa, Octavio</creatorcontrib><creatorcontrib>Quiroz-Castellanos, Marcela</creatorcontrib><creatorcontrib>Mezura-Montes, Efrén</creatorcontrib><creatorcontrib>Cruz-Ramírez, Nicandro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical and computational applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Figueroa, Octavio</au><au>Quiroz-Castellanos, Marcela</au><au>Mezura-Montes, Efrén</au><au>Cruz-Ramírez, Nicandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem</atitle><jtitle>Mathematical and computational applications</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>28</volume><issue>1</issue><spage>6</spage><pages>6-</pages><issn>2297-8747</issn><issn>1300-686X</issn><eissn>2297-8747</eissn><abstract>The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm that uses a group-based representation scheme and variation operators that work at the group-level. This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its optimization process consists of different components, although the crossover and mutation operators are the most recurrent. This article aims to highlight the impact that a well-designed operator can have on the final performance of a GGA. We present a comparative experimental study of different mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in a set of machines. The proposed approach is focused on identifying the strategies involved in the mutation operations and adapting them to the characteristics of the studied problem. As a result of this experimental study, knowledge of the problem-domain was gained and used to design a new mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art GGA performance considerably improves by replacing the original mutation operator with the new one, achieving better results, with an improvement rate of 52%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mca28010006</doi><orcidid>https://orcid.org/0000-0002-1170-2951</orcidid><orcidid>https://orcid.org/0000-0002-1565-5267</orcidid><orcidid>https://orcid.org/0000-0001-8078-9491</orcidid><orcidid>https://orcid.org/0000-0002-0708-9875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2297-8747
ispartof Mathematical and computational applications, 2023-01, Vol.28 (1), p.6
issn 2297-8747
1300-686X
2297-8747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9fa93623326142ea881fcd074cd53113
source Publicly Available Content (ProQuest); EZB Electronic Journals Library
subjects Algorithms
Combinatorial analysis
Comparative analysis
Design
Employment
Genetic algorithms
Genetic engineering
grouping genetic algorithm
grouping mutation operator
grouping problem
Heuristic methods
Mutation
Operators
Optimization
Optimization algorithms
Scheduling
Sequential scheduling
unrelated parallel-machine scheduling
title An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Experimental%20Study%20of%20Grouping%20Mutation%20Operators%20for%20the%20Unrelated%20Parallel-Machine%20Scheduling%20Problem&rft.jtitle=Mathematical%20and%20computational%20applications&rft.au=Ramos-Figueroa,%20Octavio&rft.date=2023-01-01&rft.volume=28&rft.issue=1&rft.spage=6&rft.pages=6-&rft.issn=2297-8747&rft.eissn=2297-8747&rft_id=info:doi/10.3390/mca28010006&rft_dat=%3Cgale_doaj_%3EA752158044%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-c73d2ee69dd86e460459a6dea2a96e7b3771e0dd6b59e77239a79bf15962d12b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779513716&rft_id=info:pmid/&rft_galeid=A752158044&rfr_iscdi=true