Loading…
A transforming interpenetrating-phase cermet with high strength and energy dissipation capacity
Cermets generally exhibit a trade-off between strength and energy dissipation capacity. By applying a dual design strategy combining bioinspired architecting and metastability engineering, we developed a transforming interpenetrating-phase cermet made from zirconia ceramic preform infiltrated with a...
Saved in:
Published in: | Materials research letters 2025-01, Vol.13 (1), p.51-59 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c225t-8f6186cbc218c6749fb3eb676f7683b253db09e3f2b1ff3cf61df1cee1454a243 |
container_end_page | 59 |
container_issue | 1 |
container_start_page | 51 |
container_title | Materials research letters |
container_volume | 13 |
creator | Jia, Shuangyue Zheng, Wangshu Lock, Daniel Wen Hao Li, Linghai Zhao, Lei Gan, Chee Lip Guo, Qiang |
description | Cermets generally exhibit a trade-off between strength and energy dissipation capacity. By applying a dual design strategy combining bioinspired architecting and metastability engineering, we developed a transforming interpenetrating-phase cermet made from zirconia ceramic preform infiltrated with an Al-Zn-Mg-Cu alloy. The cermet micro-pillars possessed compressive yield strengths of 773 ± 62 MPa and energy dissipation densities of 110 ± 8 MJ·m−3, 50% and 45% higher than those of the monolithic Al alloy, respectively. These results are attributed to the interpenetrating-phase architecture, stress-induced martensitic transformation in the ceramics, robust interfacial bonding, and high-density dislocations near the interfaces. |
doi_str_mv | 10.1080/21663831.2024.2418008 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9fc0b44d2a8e4eaea87f3ccf84ac15ea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9fc0b44d2a8e4eaea87f3ccf84ac15ea</doaj_id><sourcerecordid>3152800830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-8f6186cbc218c6749fb3eb676f7683b253db09e3f2b1ff3cf61df1cee1454a243</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUvsThIDnrfnaND2W4keh4EXPIZud7Ka02TVJkf57s7aKuUzmzZs3w7yiuCd4TrDEj5QIwSQjc4opn1NOJMbyqpiMeDkWrv_9b4tZjDucn6SCEDYp1AqloH20fTg43yLnE4QBPGQ0ZaAcOh0BGQgHSOjLpQ51ru1QTAF8mzPtG5TpoT2hxsXohtzWe2T0oI1Lp7vixup9hNklTouP56f39Wu5fXvZrFfb0lBapVJaQaQwtaFEGrHgS1szqMVC2IWQrKYVa2q8BGZpTaxlJtMbSwwA4RXXlLNpsTnrNr3eqSG4gw4n1WunfoA-tEqH5Mwe1NIaXHPeUC2BgwYtF1nRWMm1IRXorPVw1hpC_3mEmNSuPwaf11eMVHQ8MMOZVZ1ZJvQxBrB_UwlWozXq1xo1WqMu1rBvDLKDFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152800830</pqid></control><display><type>article</type><title>A transforming interpenetrating-phase cermet with high strength and energy dissipation capacity</title><source>Taylor & Francis Open Access</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Jia, Shuangyue ; Zheng, Wangshu ; Lock, Daniel Wen Hao ; Li, Linghai ; Zhao, Lei ; Gan, Chee Lip ; Guo, Qiang</creator><creatorcontrib>Jia, Shuangyue ; Zheng, Wangshu ; Lock, Daniel Wen Hao ; Li, Linghai ; Zhao, Lei ; Gan, Chee Lip ; Guo, Qiang</creatorcontrib><description>Cermets generally exhibit a trade-off between strength and energy dissipation capacity. By applying a dual design strategy combining bioinspired architecting and metastability engineering, we developed a transforming interpenetrating-phase cermet made from zirconia ceramic preform infiltrated with an Al-Zn-Mg-Cu alloy. The cermet micro-pillars possessed compressive yield strengths of 773 ± 62 MPa and energy dissipation densities of 110 ± 8 MJ·m−3, 50% and 45% higher than those of the monolithic Al alloy, respectively. These results are attributed to the interpenetrating-phase architecture, stress-induced martensitic transformation in the ceramics, robust interfacial bonding, and high-density dislocations near the interfaces.</description><identifier>ISSN: 2166-3831</identifier><identifier>EISSN: 2166-3831</identifier><identifier>DOI: 10.1080/21663831.2024.2418008</identifier><language>eng</language><publisher>New York: Taylor & Francis Ltd</publisher><subject>Aluminum base alloys ; Ceramics ; cermet ; Cermets ; Compressive strength ; Dislocation density ; Energy dissipation ; Engineering ; Grain size ; Interfacial bonding ; interpenetrating-phase composite ; Magnesium ; Martensitic transformations ; Materials science ; Microscopy ; Phase transformation ; yield strength ; Zirconium dioxide</subject><ispartof>Materials research letters, 2025-01, Vol.13 (1), p.51-59</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-8f6186cbc218c6749fb3eb676f7683b253db09e3f2b1ff3cf61df1cee1454a243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Jia, Shuangyue</creatorcontrib><creatorcontrib>Zheng, Wangshu</creatorcontrib><creatorcontrib>Lock, Daniel Wen Hao</creatorcontrib><creatorcontrib>Li, Linghai</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Gan, Chee Lip</creatorcontrib><creatorcontrib>Guo, Qiang</creatorcontrib><title>A transforming interpenetrating-phase cermet with high strength and energy dissipation capacity</title><title>Materials research letters</title><description>Cermets generally exhibit a trade-off between strength and energy dissipation capacity. By applying a dual design strategy combining bioinspired architecting and metastability engineering, we developed a transforming interpenetrating-phase cermet made from zirconia ceramic preform infiltrated with an Al-Zn-Mg-Cu alloy. The cermet micro-pillars possessed compressive yield strengths of 773 ± 62 MPa and energy dissipation densities of 110 ± 8 MJ·m−3, 50% and 45% higher than those of the monolithic Al alloy, respectively. These results are attributed to the interpenetrating-phase architecture, stress-induced martensitic transformation in the ceramics, robust interfacial bonding, and high-density dislocations near the interfaces.</description><subject>Aluminum base alloys</subject><subject>Ceramics</subject><subject>cermet</subject><subject>Cermets</subject><subject>Compressive strength</subject><subject>Dislocation density</subject><subject>Energy dissipation</subject><subject>Engineering</subject><subject>Grain size</subject><subject>Interfacial bonding</subject><subject>interpenetrating-phase composite</subject><subject>Magnesium</subject><subject>Martensitic transformations</subject><subject>Materials science</subject><subject>Microscopy</subject><subject>Phase transformation</subject><subject>yield strength</subject><subject>Zirconium dioxide</subject><issn>2166-3831</issn><issn>2166-3831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBUvsThIDnrfnaND2W4keh4EXPIZud7Ka02TVJkf57s7aKuUzmzZs3w7yiuCd4TrDEj5QIwSQjc4opn1NOJMbyqpiMeDkWrv_9b4tZjDucn6SCEDYp1AqloH20fTg43yLnE4QBPGQ0ZaAcOh0BGQgHSOjLpQ51ru1QTAF8mzPtG5TpoT2hxsXohtzWe2T0oI1Lp7vixup9hNklTouP56f39Wu5fXvZrFfb0lBapVJaQaQwtaFEGrHgS1szqMVC2IWQrKYVa2q8BGZpTaxlJtMbSwwA4RXXlLNpsTnrNr3eqSG4gw4n1WunfoA-tEqH5Mwe1NIaXHPeUC2BgwYtF1nRWMm1IRXorPVw1hpC_3mEmNSuPwaf11eMVHQ8MMOZVZ1ZJvQxBrB_UwlWozXq1xo1WqMu1rBvDLKDFw</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Jia, Shuangyue</creator><creator>Zheng, Wangshu</creator><creator>Lock, Daniel Wen Hao</creator><creator>Li, Linghai</creator><creator>Zhao, Lei</creator><creator>Gan, Chee Lip</creator><creator>Guo, Qiang</creator><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JG9</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20250101</creationdate><title>A transforming interpenetrating-phase cermet with high strength and energy dissipation capacity</title><author>Jia, Shuangyue ; Zheng, Wangshu ; Lock, Daniel Wen Hao ; Li, Linghai ; Zhao, Lei ; Gan, Chee Lip ; Guo, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-8f6186cbc218c6749fb3eb676f7683b253db09e3f2b1ff3cf61df1cee1454a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aluminum base alloys</topic><topic>Ceramics</topic><topic>cermet</topic><topic>Cermets</topic><topic>Compressive strength</topic><topic>Dislocation density</topic><topic>Energy dissipation</topic><topic>Engineering</topic><topic>Grain size</topic><topic>Interfacial bonding</topic><topic>interpenetrating-phase composite</topic><topic>Magnesium</topic><topic>Martensitic transformations</topic><topic>Materials science</topic><topic>Microscopy</topic><topic>Phase transformation</topic><topic>yield strength</topic><topic>Zirconium dioxide</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia, Shuangyue</creatorcontrib><creatorcontrib>Zheng, Wangshu</creatorcontrib><creatorcontrib>Lock, Daniel Wen Hao</creatorcontrib><creatorcontrib>Li, Linghai</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Gan, Chee Lip</creatorcontrib><creatorcontrib>Guo, Qiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Materials Research Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>Materials research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Shuangyue</au><au>Zheng, Wangshu</au><au>Lock, Daniel Wen Hao</au><au>Li, Linghai</au><au>Zhao, Lei</au><au>Gan, Chee Lip</au><au>Guo, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transforming interpenetrating-phase cermet with high strength and energy dissipation capacity</atitle><jtitle>Materials research letters</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><issue>1</issue><spage>51</spage><epage>59</epage><pages>51-59</pages><issn>2166-3831</issn><eissn>2166-3831</eissn><abstract>Cermets generally exhibit a trade-off between strength and energy dissipation capacity. By applying a dual design strategy combining bioinspired architecting and metastability engineering, we developed a transforming interpenetrating-phase cermet made from zirconia ceramic preform infiltrated with an Al-Zn-Mg-Cu alloy. The cermet micro-pillars possessed compressive yield strengths of 773 ± 62 MPa and energy dissipation densities of 110 ± 8 MJ·m−3, 50% and 45% higher than those of the monolithic Al alloy, respectively. These results are attributed to the interpenetrating-phase architecture, stress-induced martensitic transformation in the ceramics, robust interfacial bonding, and high-density dislocations near the interfaces.</abstract><cop>New York</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/21663831.2024.2418008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2166-3831 |
ispartof | Materials research letters, 2025-01, Vol.13 (1), p.51-59 |
issn | 2166-3831 2166-3831 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9fc0b44d2a8e4eaea87f3ccf84ac15ea |
source | Taylor & Francis Open Access; Full-Text Journals in Chemistry (Open access) |
subjects | Aluminum base alloys Ceramics cermet Cermets Compressive strength Dislocation density Energy dissipation Engineering Grain size Interfacial bonding interpenetrating-phase composite Magnesium Martensitic transformations Materials science Microscopy Phase transformation yield strength Zirconium dioxide |
title | A transforming interpenetrating-phase cermet with high strength and energy dissipation capacity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transforming%20interpenetrating-phase%20cermet%20with%20high%20strength%20and%20energy%20dissipation%20capacity&rft.jtitle=Materials%20research%20letters&rft.au=Jia,%20Shuangyue&rft.date=2025-01-01&rft.volume=13&rft.issue=1&rft.spage=51&rft.epage=59&rft.pages=51-59&rft.issn=2166-3831&rft.eissn=2166-3831&rft_id=info:doi/10.1080/21663831.2024.2418008&rft_dat=%3Cproquest_doaj_%3E3152800830%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-8f6186cbc218c6749fb3eb676f7683b253db09e3f2b1ff3cf61df1cee1454a243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3152800830&rft_id=info:pmid/&rfr_iscdi=true |