Loading…
Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models
The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous...
Saved in:
Published in: | Meteorological applications 2020-01, Vol.27 (1), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | |
container_title | Meteorological applications |
container_volume | 27 |
creator | Azad, Armin Kashi, Hamed Farzin, Saeed Singh, Vijay P. Kisi, Ozgur Karami, Hojat Sanikhani, Hadi |
description | The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz.
Steps of the suggested models |
doi_str_mv | 10.1002/met.1817 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9fd61a2d66154fde8b09ce59ba52e01f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9fd61a2d66154fde8b09ce59ba52e01f</doaj_id><sourcerecordid>2364922346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1JoPko9CcIeunFqUaSbTm3ENI0kI_L5iz0MWq02CtXslN2f3202dBbTzMMD--8M29VfQV6AZSyHyPOFyCh-1SdgGj7WlJJj0rPG1oLybrP1WnOa0qBA8BJ5R_jKw5ET1OK2r5gJj4mokMiM44TJj0vCcmU0AU7h7i5JFfExnHSKeS4IdEXfknkZWtScARf47DsMZ22xC-73ZaM0eGQz6tjr4eMXz7qWfX882Z1_au-f7q9u766ry3veVdLBMocNtyIhnWsNQa6XhgpGtk11gmqPRhmjfEd7TgXnmOPEoThiE46z8-qu4Oui3qtphTG4kRFHdT7IKbfSqc52AFV710Lmrm2hUZ4h9LQ3mLTG90wpLDX-nbQKq_5s2Ce1bqcuin2FeOt6Bnjoi3U9wNlU8w5of-3FajaJ6JKImqfSEHrA_o3DLj9L6ceblbv_Bt8C435</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364922346</pqid></control><display><type>article</type><title>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Azad, Armin ; Kashi, Hamed ; Farzin, Saeed ; Singh, Vijay P. ; Kisi, Ozgur ; Karami, Hojat ; Sanikhani, Hadi</creator><creatorcontrib>Azad, Armin ; Kashi, Hamed ; Farzin, Saeed ; Singh, Vijay P. ; Kisi, Ozgur ; Karami, Hojat ; Sanikhani, Hadi</creatorcontrib><description>The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz.
Steps of the suggested models</description><identifier>ISSN: 1350-4827</identifier><identifier>EISSN: 1469-8080</identifier><identifier>DOI: 10.1002/met.1817</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>adaptive neuro‐fuzzy inference system (ANFIS) ; Adaptive systems ; Air temperature ; Ant colony optimization ; evolutionary algorithm (EA) ; Evolutionary computation ; extreme and average temperature, genetic algorithm (GA) ; Fuzzy systems ; Genetic algorithms ; Maximum temperatures ; Particle swarm optimization ; Root-mean-square errors ; Weather stations</subject><ispartof>Meteorological applications, 2020-01, Vol.27 (1), p.n/a</ispartof><rights>2019 Royal Meteorological Society</rights><rights>2020 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</citedby><cites>FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</cites><orcidid>0000-0003-4209-9558 ; 0000-0003-4828-1713 ; 0000-0001-7847-5872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmet.1817$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmet.1817$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmet.1817$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Azad, Armin</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Farzin, Saeed</creatorcontrib><creatorcontrib>Singh, Vijay P.</creatorcontrib><creatorcontrib>Kisi, Ozgur</creatorcontrib><creatorcontrib>Karami, Hojat</creatorcontrib><creatorcontrib>Sanikhani, Hadi</creatorcontrib><title>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</title><title>Meteorological applications</title><description>The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz.
Steps of the suggested models</description><subject>adaptive neuro‐fuzzy inference system (ANFIS)</subject><subject>Adaptive systems</subject><subject>Air temperature</subject><subject>Ant colony optimization</subject><subject>evolutionary algorithm (EA)</subject><subject>Evolutionary computation</subject><subject>extreme and average temperature, genetic algorithm (GA)</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Maximum temperatures</subject><subject>Particle swarm optimization</subject><subject>Root-mean-square errors</subject><subject>Weather stations</subject><issn>1350-4827</issn><issn>1469-8080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kU1r3DAQhk1JoPko9CcIeunFqUaSbTm3ENI0kI_L5iz0MWq02CtXslN2f3202dBbTzMMD--8M29VfQV6AZSyHyPOFyCh-1SdgGj7WlJJj0rPG1oLybrP1WnOa0qBA8BJ5R_jKw5ET1OK2r5gJj4mokMiM44TJj0vCcmU0AU7h7i5JFfExnHSKeS4IdEXfknkZWtScARf47DsMZ22xC-73ZaM0eGQz6tjr4eMXz7qWfX882Z1_au-f7q9u766ry3veVdLBMocNtyIhnWsNQa6XhgpGtk11gmqPRhmjfEd7TgXnmOPEoThiE46z8-qu4Oui3qtphTG4kRFHdT7IKbfSqc52AFV710Lmrm2hUZ4h9LQ3mLTG90wpLDX-nbQKq_5s2Ce1bqcuin2FeOt6Bnjoi3U9wNlU8w5of-3FajaJ6JKImqfSEHrA_o3DLj9L6ceblbv_Bt8C435</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Azad, Armin</creator><creator>Kashi, Hamed</creator><creator>Farzin, Saeed</creator><creator>Singh, Vijay P.</creator><creator>Kisi, Ozgur</creator><creator>Karami, Hojat</creator><creator>Sanikhani, Hadi</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4209-9558</orcidid><orcidid>https://orcid.org/0000-0003-4828-1713</orcidid><orcidid>https://orcid.org/0000-0001-7847-5872</orcidid></search><sort><creationdate>202001</creationdate><title>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</title><author>Azad, Armin ; Kashi, Hamed ; Farzin, Saeed ; Singh, Vijay P. ; Kisi, Ozgur ; Karami, Hojat ; Sanikhani, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive neuro‐fuzzy inference system (ANFIS)</topic><topic>Adaptive systems</topic><topic>Air temperature</topic><topic>Ant colony optimization</topic><topic>evolutionary algorithm (EA)</topic><topic>Evolutionary computation</topic><topic>extreme and average temperature, genetic algorithm (GA)</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Maximum temperatures</topic><topic>Particle swarm optimization</topic><topic>Root-mean-square errors</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, Armin</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Farzin, Saeed</creatorcontrib><creatorcontrib>Singh, Vijay P.</creatorcontrib><creatorcontrib>Kisi, Ozgur</creatorcontrib><creatorcontrib>Karami, Hojat</creatorcontrib><creatorcontrib>Sanikhani, Hadi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Meteorological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azad, Armin</au><au>Kashi, Hamed</au><au>Farzin, Saeed</au><au>Singh, Vijay P.</au><au>Kisi, Ozgur</au><au>Karami, Hojat</au><au>Sanikhani, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</atitle><jtitle>Meteorological applications</jtitle><date>2020-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><epage>n/a</epage><issn>1350-4827</issn><eissn>1469-8080</eissn><abstract>The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz.
Steps of the suggested models</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/met.1817</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4209-9558</orcidid><orcidid>https://orcid.org/0000-0003-4828-1713</orcidid><orcidid>https://orcid.org/0000-0001-7847-5872</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1350-4827 |
ispartof | Meteorological applications, 2020-01, Vol.27 (1), p.n/a |
issn | 1350-4827 1469-8080 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9fd61a2d66154fde8b09ce59ba52e01f |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | adaptive neuro‐fuzzy inference system (ANFIS) Adaptive systems Air temperature Ant colony optimization evolutionary algorithm (EA) Evolutionary computation extreme and average temperature, genetic algorithm (GA) Fuzzy systems Genetic algorithms Maximum temperatures Particle swarm optimization Root-mean-square errors Weather stations |
title | Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20approaches%20for%20air%20temperature%20prediction:%20A%20comparison%20of%20four%20hybrid%20evolutionary%20fuzzy%20models&rft.jtitle=Meteorological%20applications&rft.au=Azad,%20Armin&rft.date=2020-01&rft.volume=27&rft.issue=1&rft.epage=n/a&rft.issn=1350-4827&rft.eissn=1469-8080&rft_id=info:doi/10.1002/met.1817&rft_dat=%3Cproquest_24P%3E2364922346%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2364922346&rft_id=info:pmid/&rfr_iscdi=true |