Loading…

Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models

The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous...

Full description

Saved in:
Bibliographic Details
Published in:Meteorological applications 2020-01, Vol.27 (1), p.n/a
Main Authors: Azad, Armin, Kashi, Hamed, Farzin, Saeed, Singh, Vijay P., Kisi, Ozgur, Karami, Hojat, Sanikhani, Hadi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3
cites cdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3
container_end_page n/a
container_issue 1
container_start_page
container_title Meteorological applications
container_volume 27
creator Azad, Armin
Kashi, Hamed
Farzin, Saeed
Singh, Vijay P.
Kisi, Ozgur
Karami, Hojat
Sanikhani, Hadi
description The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz. Steps of the suggested models
doi_str_mv 10.1002/met.1817
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9fd61a2d66154fde8b09ce59ba52e01f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9fd61a2d66154fde8b09ce59ba52e01f</doaj_id><sourcerecordid>2364922346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1JoPko9CcIeunFqUaSbTm3ENI0kI_L5iz0MWq02CtXslN2f3202dBbTzMMD--8M29VfQV6AZSyHyPOFyCh-1SdgGj7WlJJj0rPG1oLybrP1WnOa0qBA8BJ5R_jKw5ET1OK2r5gJj4mokMiM44TJj0vCcmU0AU7h7i5JFfExnHSKeS4IdEXfknkZWtScARf47DsMZ22xC-73ZaM0eGQz6tjr4eMXz7qWfX882Z1_au-f7q9u766ry3veVdLBMocNtyIhnWsNQa6XhgpGtk11gmqPRhmjfEd7TgXnmOPEoThiE46z8-qu4Oui3qtphTG4kRFHdT7IKbfSqc52AFV710Lmrm2hUZ4h9LQ3mLTG90wpLDX-nbQKq_5s2Ce1bqcuin2FeOt6Bnjoi3U9wNlU8w5of-3FajaJ6JKImqfSEHrA_o3DLj9L6ceblbv_Bt8C435</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364922346</pqid></control><display><type>article</type><title>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Azad, Armin ; Kashi, Hamed ; Farzin, Saeed ; Singh, Vijay P. ; Kisi, Ozgur ; Karami, Hojat ; Sanikhani, Hadi</creator><creatorcontrib>Azad, Armin ; Kashi, Hamed ; Farzin, Saeed ; Singh, Vijay P. ; Kisi, Ozgur ; Karami, Hojat ; Sanikhani, Hadi</creatorcontrib><description>The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz. Steps of the suggested models</description><identifier>ISSN: 1350-4827</identifier><identifier>EISSN: 1469-8080</identifier><identifier>DOI: 10.1002/met.1817</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>adaptive neuro‐fuzzy inference system (ANFIS) ; Adaptive systems ; Air temperature ; Ant colony optimization ; evolutionary algorithm (EA) ; Evolutionary computation ; extreme and average temperature, genetic algorithm (GA) ; Fuzzy systems ; Genetic algorithms ; Maximum temperatures ; Particle swarm optimization ; Root-mean-square errors ; Weather stations</subject><ispartof>Meteorological applications, 2020-01, Vol.27 (1), p.n/a</ispartof><rights>2019 Royal Meteorological Society</rights><rights>2020 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</citedby><cites>FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</cites><orcidid>0000-0003-4209-9558 ; 0000-0003-4828-1713 ; 0000-0001-7847-5872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmet.1817$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmet.1817$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmet.1817$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Azad, Armin</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Farzin, Saeed</creatorcontrib><creatorcontrib>Singh, Vijay P.</creatorcontrib><creatorcontrib>Kisi, Ozgur</creatorcontrib><creatorcontrib>Karami, Hojat</creatorcontrib><creatorcontrib>Sanikhani, Hadi</creatorcontrib><title>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</title><title>Meteorological applications</title><description>The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz. Steps of the suggested models</description><subject>adaptive neuro‐fuzzy inference system (ANFIS)</subject><subject>Adaptive systems</subject><subject>Air temperature</subject><subject>Ant colony optimization</subject><subject>evolutionary algorithm (EA)</subject><subject>Evolutionary computation</subject><subject>extreme and average temperature, genetic algorithm (GA)</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Maximum temperatures</subject><subject>Particle swarm optimization</subject><subject>Root-mean-square errors</subject><subject>Weather stations</subject><issn>1350-4827</issn><issn>1469-8080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1kU1r3DAQhk1JoPko9CcIeunFqUaSbTm3ENI0kI_L5iz0MWq02CtXslN2f3202dBbTzMMD--8M29VfQV6AZSyHyPOFyCh-1SdgGj7WlJJj0rPG1oLybrP1WnOa0qBA8BJ5R_jKw5ET1OK2r5gJj4mokMiM44TJj0vCcmU0AU7h7i5JFfExnHSKeS4IdEXfknkZWtScARf47DsMZ22xC-73ZaM0eGQz6tjr4eMXz7qWfX882Z1_au-f7q9u766ry3veVdLBMocNtyIhnWsNQa6XhgpGtk11gmqPRhmjfEd7TgXnmOPEoThiE46z8-qu4Oui3qtphTG4kRFHdT7IKbfSqc52AFV710Lmrm2hUZ4h9LQ3mLTG90wpLDX-nbQKq_5s2Ce1bqcuin2FeOt6Bnjoi3U9wNlU8w5of-3FajaJ6JKImqfSEHrA_o3DLj9L6ceblbv_Bt8C435</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Azad, Armin</creator><creator>Kashi, Hamed</creator><creator>Farzin, Saeed</creator><creator>Singh, Vijay P.</creator><creator>Kisi, Ozgur</creator><creator>Karami, Hojat</creator><creator>Sanikhani, Hadi</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4209-9558</orcidid><orcidid>https://orcid.org/0000-0003-4828-1713</orcidid><orcidid>https://orcid.org/0000-0001-7847-5872</orcidid></search><sort><creationdate>202001</creationdate><title>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</title><author>Azad, Armin ; Kashi, Hamed ; Farzin, Saeed ; Singh, Vijay P. ; Kisi, Ozgur ; Karami, Hojat ; Sanikhani, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive neuro‐fuzzy inference system (ANFIS)</topic><topic>Adaptive systems</topic><topic>Air temperature</topic><topic>Ant colony optimization</topic><topic>evolutionary algorithm (EA)</topic><topic>Evolutionary computation</topic><topic>extreme and average temperature, genetic algorithm (GA)</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Maximum temperatures</topic><topic>Particle swarm optimization</topic><topic>Root-mean-square errors</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, Armin</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Farzin, Saeed</creatorcontrib><creatorcontrib>Singh, Vijay P.</creatorcontrib><creatorcontrib>Kisi, Ozgur</creatorcontrib><creatorcontrib>Karami, Hojat</creatorcontrib><creatorcontrib>Sanikhani, Hadi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Meteorological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azad, Armin</au><au>Kashi, Hamed</au><au>Farzin, Saeed</au><au>Singh, Vijay P.</au><au>Kisi, Ozgur</au><au>Karami, Hojat</au><au>Sanikhani, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models</atitle><jtitle>Meteorological applications</jtitle><date>2020-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><epage>n/a</epage><issn>1350-4827</issn><eissn>1469-8080</eissn><abstract>The application of a novel method of adaptive neuro‐fuzzy inference system (ANFIS) for the prediction of air temperature is investigated. The paper discusses the improvement of the ANFIS when used with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization for continuous domains (ACOR) and differential evolution (DE). For this purpose, three input of multiple variables are selected in order to predict monthly minimum, average and maximum air temperatures for 34 meteorological stations in Iran. The co‐efficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) are used as evaluation criteria. A comparison of suggested fuzzy models indicates that the ANFIS with the GA has the best performance in the prediction of maximum temperatures. It decreases the RMSE of the classic ANFIS model in the validation stage from 1.22 to 1.12°C for Mashhad, from 1.26 to 1.01°C for Zahedan, from 1.20 to 0.98°C for Ahvaz, from 1.76 to 1.24°C for Rasht and from 1.21 to 0.95°C for Tabriz. Steps of the suggested models</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/met.1817</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4209-9558</orcidid><orcidid>https://orcid.org/0000-0003-4828-1713</orcidid><orcidid>https://orcid.org/0000-0001-7847-5872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1350-4827
ispartof Meteorological applications, 2020-01, Vol.27 (1), p.n/a
issn 1350-4827
1469-8080
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9fd61a2d66154fde8b09ce59ba52e01f
source Open Access: Wiley-Blackwell Open Access Journals
subjects adaptive neuro‐fuzzy inference system (ANFIS)
Adaptive systems
Air temperature
Ant colony optimization
evolutionary algorithm (EA)
Evolutionary computation
extreme and average temperature, genetic algorithm (GA)
Fuzzy systems
Genetic algorithms
Maximum temperatures
Particle swarm optimization
Root-mean-square errors
Weather stations
title Novel approaches for air temperature prediction: A comparison of four hybrid evolutionary fuzzy models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20approaches%20for%20air%20temperature%20prediction:%20A%20comparison%20of%20four%20hybrid%20evolutionary%20fuzzy%20models&rft.jtitle=Meteorological%20applications&rft.au=Azad,%20Armin&rft.date=2020-01&rft.volume=27&rft.issue=1&rft.epage=n/a&rft.issn=1350-4827&rft.eissn=1469-8080&rft_id=info:doi/10.1002/met.1817&rft_dat=%3Cproquest_24P%3E2364922346%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3937-8e102de53b452726bb1794b845875cd40af1b2cbbf707334f3e9e814b3eed8df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2364922346&rft_id=info:pmid/&rfr_iscdi=true