Loading…

WAAM Technique: Process Parameters Affecting the Mechanical Properties and Microstructures of Low-Carbon Steel

This study surveys the influences of travel speed, voltage, and intensity on the characteristics of low-carbon steel samples generated by the Wire Arc Additive Manufacturing (WAAM) technique. The results indicated that the WAAM samples have isotropy grain shape, with grain size number values varying...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2023-04, Vol.13 (5), p.873
Main Authors: Nguyen, Van-Thuc, Minh, Pham Son, Uyen, Tran Minh The, Do, Thanh Trung, Ngoc, Han Vuong Thi, Le, Minh-Tai, Tien Nguyen, Van Thanh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-5a76b36d5b92ccee752fb70ee862af7d84c926085396391e5c880b723d5bcb8e3
cites cdi_FETCH-LOGICAL-c469t-5a76b36d5b92ccee752fb70ee862af7d84c926085396391e5c880b723d5bcb8e3
container_end_page
container_issue 5
container_start_page 873
container_title Metals (Basel )
container_volume 13
creator Nguyen, Van-Thuc
Minh, Pham Son
Uyen, Tran Minh The
Do, Thanh Trung
Ngoc, Han Vuong Thi
Le, Minh-Tai
Tien Nguyen, Van Thanh
description This study surveys the influences of travel speed, voltage, and intensity on the characteristics of low-carbon steel samples generated by the Wire Arc Additive Manufacturing (WAAM) technique. The results indicated that the WAAM samples have isotropy grain shape, with grain size number values varying from about 8 to 12. Interestingly, the WAAM sample achieves better mechanical properties with a higher ultimate tensile strength (UTS) value and higher elongation at break value than the original wire. The UTS value of the WAAM sample is 21–40% higher than the original steel wire. The WAAM sample with a travel rate of 350 mm·min−1, a voltage of 24 V, and an electrical intensity of 120 A reaches the highest UTS value of 694 MPa. The WAAM sample with a travel rate of 400 mm·min−1, a voltage of 22 V, and an electrical intensity of 170 A gains the lowest UTS value of 599 MPa. Moreover, the elongation values oscillate around 41–57%, two or three times higher than the original steel wire. SEM microstructure reveals a ductile fracture surface with dimples of the samples after the tensile test, indicating the toughness of the samples. The fracture surface also shows the equiaxial shape and grain size of the WAAM samples. According to Taguchi analyses, the travel rate factor greatly impacts grain size. The voltage factor has the highest effect on the UTS value. The intensity factor has the most significant impact on the elongation value.
doi_str_mv 10.3390/met13050873
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ffa8f9c0dd249bc83b1d1bc225dee35</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750992388</galeid><doaj_id>oai_doaj_org_article_9ffa8f9c0dd249bc83b1d1bc225dee35</doaj_id><sourcerecordid>A750992388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-5a76b36d5b92ccee752fb70ee862af7d84c926085396391e5c880b723d5bcb8e3</originalsourceid><addsrcrecordid>eNpNUcGKFDEUbETBZd2TPxDwKL2mk04n8dYMui7M4IIrHkPy-mU2w0wyJhnEvzfjiGxyyKOoKir1uu7tQG851_TDAevAqaBK8hfdFaNS9KOkw8tn8-vuppQdbUexiWp91cUf87whjwhPMfw84UfykBNgKeTBZtscMRcye49QQ9yS-oRk07g2BrD7M_eIuQYsxMaFbALkVGo-QT3lhiVP1ulXv7LZpUi-VcT9m-6Vt_uCN__e6-7750-Pqy_9-uvd_Wpe9zBOuvbCysnxaRFOMwBEKZh3kiKqiVkvFzWCbh9QguuJ6wEFKEWdZLwpwCnk1939xXdJdmeOORxs_m2SDeYvkPLW2BYc9mi091Z5DXRZ2KgdKO6GZXDAmFgQuWhe7y5ex5xaRaWaXTrl2OIbpgY9Sk25bKzbC2trm2mIPtVsod0FDwFSRB8aPkvRamdcqSZ4fxGcSysZ_f-YAzXnhZpnC-V_APa2k1E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819479037</pqid></control><display><type>article</type><title>WAAM Technique: Process Parameters Affecting the Mechanical Properties and Microstructures of Low-Carbon Steel</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Nguyen, Van-Thuc ; Minh, Pham Son ; Uyen, Tran Minh The ; Do, Thanh Trung ; Ngoc, Han Vuong Thi ; Le, Minh-Tai ; Tien Nguyen, Van Thanh</creator><creatorcontrib>Nguyen, Van-Thuc ; Minh, Pham Son ; Uyen, Tran Minh The ; Do, Thanh Trung ; Ngoc, Han Vuong Thi ; Le, Minh-Tai ; Tien Nguyen, Van Thanh</creatorcontrib><description>This study surveys the influences of travel speed, voltage, and intensity on the characteristics of low-carbon steel samples generated by the Wire Arc Additive Manufacturing (WAAM) technique. The results indicated that the WAAM samples have isotropy grain shape, with grain size number values varying from about 8 to 12. Interestingly, the WAAM sample achieves better mechanical properties with a higher ultimate tensile strength (UTS) value and higher elongation at break value than the original wire. The UTS value of the WAAM sample is 21–40% higher than the original steel wire. The WAAM sample with a travel rate of 350 mm·min−1, a voltage of 24 V, and an electrical intensity of 120 A reaches the highest UTS value of 694 MPa. The WAAM sample with a travel rate of 400 mm·min−1, a voltage of 22 V, and an electrical intensity of 170 A gains the lowest UTS value of 599 MPa. Moreover, the elongation values oscillate around 41–57%, two or three times higher than the original steel wire. SEM microstructure reveals a ductile fracture surface with dimples of the samples after the tensile test, indicating the toughness of the samples. The fracture surface also shows the equiaxial shape and grain size of the WAAM samples. According to Taguchi analyses, the travel rate factor greatly impacts grain size. The voltage factor has the highest effect on the UTS value. The intensity factor has the most significant impact on the elongation value.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met13050873</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Additive manufacturing ; Alloys ; Carbon content ; Carbon steel ; Dimpling ; Ductile fracture ; Electric potential ; Elongation ; Energy consumption ; Fracture surfaces ; Fusion ; Grain size ; intensity ; Isotropy ; Lasers ; Low carbon steel ; Low carbon steels ; Mechanical properties ; Microstructure ; Process parameters ; Stainless steel ; Steel wire ; Steel, Structural ; Tensile strength ; Tensile tests ; travel rate ; Ultimate tensile strength ; Voltage ; Wire</subject><ispartof>Metals (Basel ), 2023-04, Vol.13 (5), p.873</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-5a76b36d5b92ccee752fb70ee862af7d84c926085396391e5c880b723d5bcb8e3</citedby><cites>FETCH-LOGICAL-c469t-5a76b36d5b92ccee752fb70ee862af7d84c926085396391e5c880b723d5bcb8e3</cites><orcidid>0000-0003-0546-3656 ; 0000-0002-9759-9229 ; 0000-0002-8236-2202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819479037/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819479037?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Nguyen, Van-Thuc</creatorcontrib><creatorcontrib>Minh, Pham Son</creatorcontrib><creatorcontrib>Uyen, Tran Minh The</creatorcontrib><creatorcontrib>Do, Thanh Trung</creatorcontrib><creatorcontrib>Ngoc, Han Vuong Thi</creatorcontrib><creatorcontrib>Le, Minh-Tai</creatorcontrib><creatorcontrib>Tien Nguyen, Van Thanh</creatorcontrib><title>WAAM Technique: Process Parameters Affecting the Mechanical Properties and Microstructures of Low-Carbon Steel</title><title>Metals (Basel )</title><description>This study surveys the influences of travel speed, voltage, and intensity on the characteristics of low-carbon steel samples generated by the Wire Arc Additive Manufacturing (WAAM) technique. The results indicated that the WAAM samples have isotropy grain shape, with grain size number values varying from about 8 to 12. Interestingly, the WAAM sample achieves better mechanical properties with a higher ultimate tensile strength (UTS) value and higher elongation at break value than the original wire. The UTS value of the WAAM sample is 21–40% higher than the original steel wire. The WAAM sample with a travel rate of 350 mm·min−1, a voltage of 24 V, and an electrical intensity of 120 A reaches the highest UTS value of 694 MPa. The WAAM sample with a travel rate of 400 mm·min−1, a voltage of 22 V, and an electrical intensity of 170 A gains the lowest UTS value of 599 MPa. Moreover, the elongation values oscillate around 41–57%, two or three times higher than the original steel wire. SEM microstructure reveals a ductile fracture surface with dimples of the samples after the tensile test, indicating the toughness of the samples. The fracture surface also shows the equiaxial shape and grain size of the WAAM samples. According to Taguchi analyses, the travel rate factor greatly impacts grain size. The voltage factor has the highest effect on the UTS value. The intensity factor has the most significant impact on the elongation value.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Carbon content</subject><subject>Carbon steel</subject><subject>Dimpling</subject><subject>Ductile fracture</subject><subject>Electric potential</subject><subject>Elongation</subject><subject>Energy consumption</subject><subject>Fracture surfaces</subject><subject>Fusion</subject><subject>Grain size</subject><subject>intensity</subject><subject>Isotropy</subject><subject>Lasers</subject><subject>Low carbon steel</subject><subject>Low carbon steels</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Process parameters</subject><subject>Stainless steel</subject><subject>Steel wire</subject><subject>Steel, Structural</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>travel rate</subject><subject>Ultimate tensile strength</subject><subject>Voltage</subject><subject>Wire</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcGKFDEUbETBZd2TPxDwKL2mk04n8dYMui7M4IIrHkPy-mU2w0wyJhnEvzfjiGxyyKOoKir1uu7tQG851_TDAevAqaBK8hfdFaNS9KOkw8tn8-vuppQdbUexiWp91cUf87whjwhPMfw84UfykBNgKeTBZtscMRcye49QQ9yS-oRk07g2BrD7M_eIuQYsxMaFbALkVGo-QT3lhiVP1ulXv7LZpUi-VcT9m-6Vt_uCN__e6-7750-Pqy_9-uvd_Wpe9zBOuvbCysnxaRFOMwBEKZh3kiKqiVkvFzWCbh9QguuJ6wEFKEWdZLwpwCnk1939xXdJdmeOORxs_m2SDeYvkPLW2BYc9mi091Z5DXRZ2KgdKO6GZXDAmFgQuWhe7y5ex5xaRaWaXTrl2OIbpgY9Sk25bKzbC2trm2mIPtVsod0FDwFSRB8aPkvRamdcqSZ4fxGcSysZ_f-YAzXnhZpnC-V_APa2k1E</recordid><startdate>20230430</startdate><enddate>20230430</enddate><creator>Nguyen, Van-Thuc</creator><creator>Minh, Pham Son</creator><creator>Uyen, Tran Minh The</creator><creator>Do, Thanh Trung</creator><creator>Ngoc, Han Vuong Thi</creator><creator>Le, Minh-Tai</creator><creator>Tien Nguyen, Van Thanh</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0546-3656</orcidid><orcidid>https://orcid.org/0000-0002-9759-9229</orcidid><orcidid>https://orcid.org/0000-0002-8236-2202</orcidid></search><sort><creationdate>20230430</creationdate><title>WAAM Technique: Process Parameters Affecting the Mechanical Properties and Microstructures of Low-Carbon Steel</title><author>Nguyen, Van-Thuc ; Minh, Pham Son ; Uyen, Tran Minh The ; Do, Thanh Trung ; Ngoc, Han Vuong Thi ; Le, Minh-Tai ; Tien Nguyen, Van Thanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-5a76b36d5b92ccee752fb70ee862af7d84c926085396391e5c880b723d5bcb8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Carbon content</topic><topic>Carbon steel</topic><topic>Dimpling</topic><topic>Ductile fracture</topic><topic>Electric potential</topic><topic>Elongation</topic><topic>Energy consumption</topic><topic>Fracture surfaces</topic><topic>Fusion</topic><topic>Grain size</topic><topic>intensity</topic><topic>Isotropy</topic><topic>Lasers</topic><topic>Low carbon steel</topic><topic>Low carbon steels</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Process parameters</topic><topic>Stainless steel</topic><topic>Steel wire</topic><topic>Steel, Structural</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>travel rate</topic><topic>Ultimate tensile strength</topic><topic>Voltage</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van-Thuc</creatorcontrib><creatorcontrib>Minh, Pham Son</creatorcontrib><creatorcontrib>Uyen, Tran Minh The</creatorcontrib><creatorcontrib>Do, Thanh Trung</creatorcontrib><creatorcontrib>Ngoc, Han Vuong Thi</creatorcontrib><creatorcontrib>Le, Minh-Tai</creatorcontrib><creatorcontrib>Tien Nguyen, Van Thanh</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Van-Thuc</au><au>Minh, Pham Son</au><au>Uyen, Tran Minh The</au><au>Do, Thanh Trung</au><au>Ngoc, Han Vuong Thi</au><au>Le, Minh-Tai</au><au>Tien Nguyen, Van Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WAAM Technique: Process Parameters Affecting the Mechanical Properties and Microstructures of Low-Carbon Steel</atitle><jtitle>Metals (Basel )</jtitle><date>2023-04-30</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>873</spage><pages>873-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>This study surveys the influences of travel speed, voltage, and intensity on the characteristics of low-carbon steel samples generated by the Wire Arc Additive Manufacturing (WAAM) technique. The results indicated that the WAAM samples have isotropy grain shape, with grain size number values varying from about 8 to 12. Interestingly, the WAAM sample achieves better mechanical properties with a higher ultimate tensile strength (UTS) value and higher elongation at break value than the original wire. The UTS value of the WAAM sample is 21–40% higher than the original steel wire. The WAAM sample with a travel rate of 350 mm·min−1, a voltage of 24 V, and an electrical intensity of 120 A reaches the highest UTS value of 694 MPa. The WAAM sample with a travel rate of 400 mm·min−1, a voltage of 22 V, and an electrical intensity of 170 A gains the lowest UTS value of 599 MPa. Moreover, the elongation values oscillate around 41–57%, two or three times higher than the original steel wire. SEM microstructure reveals a ductile fracture surface with dimples of the samples after the tensile test, indicating the toughness of the samples. The fracture surface also shows the equiaxial shape and grain size of the WAAM samples. According to Taguchi analyses, the travel rate factor greatly impacts grain size. The voltage factor has the highest effect on the UTS value. The intensity factor has the most significant impact on the elongation value.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met13050873</doi><orcidid>https://orcid.org/0000-0003-0546-3656</orcidid><orcidid>https://orcid.org/0000-0002-9759-9229</orcidid><orcidid>https://orcid.org/0000-0002-8236-2202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2023-04, Vol.13 (5), p.873
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9ffa8f9c0dd249bc83b1d1bc225dee35
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects 3-D printers
3D printing
Additive manufacturing
Alloys
Carbon content
Carbon steel
Dimpling
Ductile fracture
Electric potential
Elongation
Energy consumption
Fracture surfaces
Fusion
Grain size
intensity
Isotropy
Lasers
Low carbon steel
Low carbon steels
Mechanical properties
Microstructure
Process parameters
Stainless steel
Steel wire
Steel, Structural
Tensile strength
Tensile tests
travel rate
Ultimate tensile strength
Voltage
Wire
title WAAM Technique: Process Parameters Affecting the Mechanical Properties and Microstructures of Low-Carbon Steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WAAM%20Technique:%20Process%20Parameters%20Affecting%20the%20Mechanical%20Properties%20and%20Microstructures%20of%20Low-Carbon%20Steel&rft.jtitle=Metals%20(Basel%20)&rft.au=Nguyen,%20Van-Thuc&rft.date=2023-04-30&rft.volume=13&rft.issue=5&rft.spage=873&rft.pages=873-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met13050873&rft_dat=%3Cgale_doaj_%3EA750992388%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-5a76b36d5b92ccee752fb70ee862af7d84c926085396391e5c880b723d5bcb8e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819479037&rft_id=info:pmid/&rft_galeid=A750992388&rfr_iscdi=true