Loading…
Assessing the Generalization Capacity of Convolutional Neural Networks and Vision Transformers for Deforestation Detection in Tropical Biomes
Deep Learning (DL) models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have become popular for change detection tasks, including the deforestation mapping application. However, not enough attention has been paid to the domain shift issue, which affects classification...
Saved in:
Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3-2024, p.519-525 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 525 |
container_issue | |
container_start_page | 519 |
container_title | International archives of the photogrammetry, remote sensing and spatial information sciences. |
container_volume | XLVIII-3-2024 |
creator | Soto Vega, Pedro J. Lobo Torres, Daliana Andrade-Miranda, Gustavo X. da Costa, Gilson A. O. P. Feitosa, Raul Queiroz |
description | Deep Learning (DL) models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have become popular for change detection tasks, including the deforestation mapping application. However, not enough attention has been paid to the domain shift issue, which affects classification performance when pre-trained models are used in areas with different forest covers and deforestation practices. This study compares DL methods for deforestation detection, focusing on assessing how well CNNs and ViTs can adapt to the domain shift. Two different models, namely, DeepLabv3+ and UNETR, were trained using remote sensing images and references from a specific location and then tested in other sites to simulate real-world scenarios. The results showed that the ViT-based architecture achieved better performance when trained and tested in the same region but showed lower generalization capacity in cross-domain scenarios. We consider this a work in progress that needs further research to confirm its findings, with the evaluation of additional architectures on a wider range of domains. |
doi_str_mv | 10.5194/isprs-archives-XLVIII-3-2024-519-2024 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a00e9b308010437a8b3c37b879b7d9d2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a00e9b308010437a8b3c37b879b7d9d2</doaj_id><sourcerecordid>3125752383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2534-8659e31cca4405d79b4de599cc79ba98111af111b1139fa1ec78c2b0edd937da3</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhiMEElXpO1jibLDjeBMfy7a0kVZwKRU3a-JMWm-zcfBkW7XvwDvjJAVxmfk1-vyPxn-WcSk-aWmKz57GSByiu_ePSPzn7raua654LvKCJ2IRb7KTPMHcCFW8_U-_z86I9kIIWWw2WuiT7Pc5ERL54Y5N98iucMAIvX-ByYeBbWEE56dnFjq2DcNj6I_zHHr2DY9xadNTiA_EYGjZraf50U2EgboQDxiJpc4uMFWkafW8wAndovzMhtG7ZPTFhwPSh-xdBz3h2Ws_zX58vbzZXvPd96t6e77jLteq4NVGG1TSOSgKodvSNEWL2hjnkgRTSSmhS6WRUpkOJLqycnkjsG2NKltQp1m9-rYB9naM_gDx2QbwdhmEeGchTt71aEEINI0SlZCiUCVUjXKqbKq0qWxNmyevj6vXGMOvYzrT7sMxpj8iq2SuS52rSiXqcqVcDEQRu39bpbBzsHYJ1v4N1q7BWmXnPGdiEeoPsLigdg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125752383</pqid></control><display><type>article</type><title>Assessing the Generalization Capacity of Convolutional Neural Networks and Vision Transformers for Deforestation Detection in Tropical Biomes</title><source>Publicly Available Content (ProQuest)</source><source>EZB Electronic Journals Library</source><creator>Soto Vega, Pedro J. ; Lobo Torres, Daliana ; Andrade-Miranda, Gustavo X. ; da Costa, Gilson A. O. P. ; Feitosa, Raul Queiroz</creator><creatorcontrib>Soto Vega, Pedro J. ; Lobo Torres, Daliana ; Andrade-Miranda, Gustavo X. ; da Costa, Gilson A. O. P. ; Feitosa, Raul Queiroz</creatorcontrib><description>Deep Learning (DL) models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have become popular for change detection tasks, including the deforestation mapping application. However, not enough attention has been paid to the domain shift issue, which affects classification performance when pre-trained models are used in areas with different forest covers and deforestation practices. This study compares DL methods for deforestation detection, focusing on assessing how well CNNs and ViTs can adapt to the domain shift. Two different models, namely, DeepLabv3+ and UNETR, were trained using remote sensing images and references from a specific location and then tested in other sites to simulate real-world scenarios. The results showed that the ViT-based architecture achieved better performance when trained and tested in the same region but showed lower generalization capacity in cross-domain scenarios. We consider this a work in progress that needs further research to confirm its findings, with the evaluation of additional architectures on a wider range of domains.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLVIII-3-2024-519-2024</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Artificial neural networks ; Deforestation ; Machine learning ; Neural networks ; Performance evaluation ; Remote sensing ; Workflow</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3-2024, p.519-525</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5396-8531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3125752383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Soto Vega, Pedro J.</creatorcontrib><creatorcontrib>Lobo Torres, Daliana</creatorcontrib><creatorcontrib>Andrade-Miranda, Gustavo X.</creatorcontrib><creatorcontrib>da Costa, Gilson A. O. P.</creatorcontrib><creatorcontrib>Feitosa, Raul Queiroz</creatorcontrib><title>Assessing the Generalization Capacity of Convolutional Neural Networks and Vision Transformers for Deforestation Detection in Tropical Biomes</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>Deep Learning (DL) models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have become popular for change detection tasks, including the deforestation mapping application. However, not enough attention has been paid to the domain shift issue, which affects classification performance when pre-trained models are used in areas with different forest covers and deforestation practices. This study compares DL methods for deforestation detection, focusing on assessing how well CNNs and ViTs can adapt to the domain shift. Two different models, namely, DeepLabv3+ and UNETR, were trained using remote sensing images and references from a specific location and then tested in other sites to simulate real-world scenarios. The results showed that the ViT-based architecture achieved better performance when trained and tested in the same region but showed lower generalization capacity in cross-domain scenarios. We consider this a work in progress that needs further research to confirm its findings, with the evaluation of additional architectures on a wider range of domains.</description><subject>Artificial neural networks</subject><subject>Deforestation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Remote sensing</subject><subject>Workflow</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu1DAQhiMEElXpO1jibLDjeBMfy7a0kVZwKRU3a-JMWm-zcfBkW7XvwDvjJAVxmfk1-vyPxn-WcSk-aWmKz57GSByiu_ePSPzn7raua654LvKCJ2IRb7KTPMHcCFW8_U-_z86I9kIIWWw2WuiT7Pc5ERL54Y5N98iucMAIvX-ByYeBbWEE56dnFjq2DcNj6I_zHHr2DY9xadNTiA_EYGjZraf50U2EgboQDxiJpc4uMFWkafW8wAndovzMhtG7ZPTFhwPSh-xdBz3h2Ws_zX58vbzZXvPd96t6e77jLteq4NVGG1TSOSgKodvSNEWL2hjnkgRTSSmhS6WRUpkOJLqycnkjsG2NKltQp1m9-rYB9naM_gDx2QbwdhmEeGchTt71aEEINI0SlZCiUCVUjXKqbKq0qWxNmyevj6vXGMOvYzrT7sMxpj8iq2SuS52rSiXqcqVcDEQRu39bpbBzsHYJ1v4N1q7BWmXnPGdiEeoPsLigdg</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Soto Vega, Pedro J.</creator><creator>Lobo Torres, Daliana</creator><creator>Andrade-Miranda, Gustavo X.</creator><creator>da Costa, Gilson A. O. P.</creator><creator>Feitosa, Raul Queiroz</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5396-8531</orcidid></search><sort><creationdate>20241107</creationdate><title>Assessing the Generalization Capacity of Convolutional Neural Networks and Vision Transformers for Deforestation Detection in Tropical Biomes</title><author>Soto Vega, Pedro J. ; Lobo Torres, Daliana ; Andrade-Miranda, Gustavo X. ; da Costa, Gilson A. O. P. ; Feitosa, Raul Queiroz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2534-8659e31cca4405d79b4de599cc79ba98111af111b1139fa1ec78c2b0edd937da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Deforestation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Remote sensing</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto Vega, Pedro J.</creatorcontrib><creatorcontrib>Lobo Torres, Daliana</creatorcontrib><creatorcontrib>Andrade-Miranda, Gustavo X.</creatorcontrib><creatorcontrib>da Costa, Gilson A. O. P.</creatorcontrib><creatorcontrib>Feitosa, Raul Queiroz</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto Vega, Pedro J.</au><au>Lobo Torres, Daliana</au><au>Andrade-Miranda, Gustavo X.</au><au>da Costa, Gilson A. O. P.</au><au>Feitosa, Raul Queiroz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the Generalization Capacity of Convolutional Neural Networks and Vision Transformers for Deforestation Detection in Tropical Biomes</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2024-11-07</date><risdate>2024</risdate><volume>XLVIII-3-2024</volume><spage>519</spage><epage>525</epage><pages>519-525</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>Deep Learning (DL) models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have become popular for change detection tasks, including the deforestation mapping application. However, not enough attention has been paid to the domain shift issue, which affects classification performance when pre-trained models are used in areas with different forest covers and deforestation practices. This study compares DL methods for deforestation detection, focusing on assessing how well CNNs and ViTs can adapt to the domain shift. Two different models, namely, DeepLabv3+ and UNETR, were trained using remote sensing images and references from a specific location and then tested in other sites to simulate real-world scenarios. The results showed that the ViT-based architecture achieved better performance when trained and tested in the same region but showed lower generalization capacity in cross-domain scenarios. We consider this a work in progress that needs further research to confirm its findings, with the evaluation of additional architectures on a wider range of domains.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLVIII-3-2024-519-2024</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5396-8531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3-2024, p.519-525 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a00e9b308010437a8b3c37b879b7d9d2 |
source | Publicly Available Content (ProQuest); EZB Electronic Journals Library |
subjects | Artificial neural networks Deforestation Machine learning Neural networks Performance evaluation Remote sensing Workflow |
title | Assessing the Generalization Capacity of Convolutional Neural Networks and Vision Transformers for Deforestation Detection in Tropical Biomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20Generalization%20Capacity%20of%20Convolutional%20Neural%20Networks%20and%20Vision%20Transformers%20for%20Deforestation%20Detection%20in%20Tropical%20Biomes&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Soto%20Vega,%20Pedro%20J.&rft.date=2024-11-07&rft.volume=XLVIII-3-2024&rft.spage=519&rft.epage=525&rft.pages=519-525&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLVIII-3-2024-519-2024&rft_dat=%3Cproquest_doaj_%3E3125752383%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2534-8659e31cca4405d79b4de599cc79ba98111af111b1139fa1ec78c2b0edd937da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3125752383&rft_id=info:pmid/&rfr_iscdi=true |