Loading…

The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems

End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019, Vol.9 (5), p.852
Main Authors: Hao, Lili, Wang, Dongyi, Tao, Yang, Cheng, Wenyong, Li, Jing, Liu, Zehan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613
cites cdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613
container_end_page
container_issue 5
container_start_page 852
container_title Applied sciences
container_volume 9
creator Hao, Lili
Wang, Dongyi
Tao, Yang
Cheng, Wenyong
Li, Jing
Liu, Zehan
description End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.
doi_str_mv 10.3390/app9050852
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a03236082c6040ea9c544a3c83052e00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a03236082c6040ea9c544a3c83052e00</doaj_id><sourcerecordid>2250570660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</originalsourceid><addsrcrecordid>eNpNkUtLw0AUhYMoWGo3_oIBd0L0zjtZlrTVQqWlrW6H6WRiU9pMnEzA_ntTK-rd3AeH71w4UXSL4YHSFB51XafAIeHkIuoRkCKmDMvLf_N1NGiaHXSVYppg6EVv661F489gq9zmaDV7QZk7bMqqW4ZtcLYyLrceuQKFTrgYLpZoafPWhNJVaGW29mBRWaFRNo_nk9ELWh2bYA_NTXRV6H1jBz-9H71OxuvsOZ7Nn6bZcBYbKnCIiWaMAtlIwgtgYIgRRhSEa8FASiPTAudSSGDYFJjlG665zhnnxjItOwLtR9MzN3d6p2pfHrQ_KqdL9X1w_l1pH0qzt0oDJVRA0nl0VlanhjOmqUkocGIBOtbdmVV799HaJqida33Vva8I4cAlCHFS3Z9Vxrum8bb4dcWgTjGovxjoF-t_daQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250570660</pqid></control><display><type>article</type><title>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hao, Lili ; Wang, Dongyi ; Tao, Yang ; Cheng, Wenyong ; Li, Jing ; Liu, Zehan</creator><creatorcontrib>Hao, Lili ; Wang, Dongyi ; Tao, Yang ; Cheng, Wenyong ; Li, Jing ; Liu, Zehan</creatorcontrib><description>End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9050852</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive systems ; Algorithms ; autoencoder ; Bit error rate ; Communication ; Communications systems ; Constellations ; Deep learning ; Distribution functions ; end-to-end learning ; Fourier transforms ; Mapping ; Methods ; Neural networks ; Optical communication ; Optical wireless ; Orthogonal Frequency Division Multiplexing ; peak-to-average power ratio ; Photonics ; Subcarriers ; Wireless networks</subject><ispartof>Applied sciences, 2019, Vol.9 (5), p.852</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</citedby><cites>FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</cites><orcidid>0000-0002-1224-5529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250570660/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250570660?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,4025,25754,27924,27925,27926,37013,44591,75127</link.rule.ids></links><search><creatorcontrib>Hao, Lili</creatorcontrib><creatorcontrib>Wang, Dongyi</creatorcontrib><creatorcontrib>Tao, Yang</creatorcontrib><creatorcontrib>Cheng, Wenyong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Zehan</creatorcontrib><title>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</title><title>Applied sciences</title><description>End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>autoencoder</subject><subject>Bit error rate</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Constellations</subject><subject>Deep learning</subject><subject>Distribution functions</subject><subject>end-to-end learning</subject><subject>Fourier transforms</subject><subject>Mapping</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Optical wireless</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>peak-to-average power ratio</subject><subject>Photonics</subject><subject>Subcarriers</subject><subject>Wireless networks</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLw0AUhYMoWGo3_oIBd0L0zjtZlrTVQqWlrW6H6WRiU9pMnEzA_ntTK-rd3AeH71w4UXSL4YHSFB51XafAIeHkIuoRkCKmDMvLf_N1NGiaHXSVYppg6EVv661F489gq9zmaDV7QZk7bMqqW4ZtcLYyLrceuQKFTrgYLpZoafPWhNJVaGW29mBRWaFRNo_nk9ELWh2bYA_NTXRV6H1jBz-9H71OxuvsOZ7Nn6bZcBYbKnCIiWaMAtlIwgtgYIgRRhSEa8FASiPTAudSSGDYFJjlG665zhnnxjItOwLtR9MzN3d6p2pfHrQ_KqdL9X1w_l1pH0qzt0oDJVRA0nl0VlanhjOmqUkocGIBOtbdmVV799HaJqida33Vva8I4cAlCHFS3Z9Vxrum8bb4dcWgTjGovxjoF-t_daQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Hao, Lili</creator><creator>Wang, Dongyi</creator><creator>Tao, Yang</creator><creator>Cheng, Wenyong</creator><creator>Li, Jing</creator><creator>Liu, Zehan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1224-5529</orcidid></search><sort><creationdate>2019</creationdate><title>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</title><author>Hao, Lili ; Wang, Dongyi ; Tao, Yang ; Cheng, Wenyong ; Li, Jing ; Liu, Zehan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>autoencoder</topic><topic>Bit error rate</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Constellations</topic><topic>Deep learning</topic><topic>Distribution functions</topic><topic>end-to-end learning</topic><topic>Fourier transforms</topic><topic>Mapping</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Optical wireless</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>peak-to-average power ratio</topic><topic>Photonics</topic><topic>Subcarriers</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Lili</creatorcontrib><creatorcontrib>Wang, Dongyi</creatorcontrib><creatorcontrib>Tao, Yang</creatorcontrib><creatorcontrib>Cheng, Wenyong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Zehan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Lili</au><au>Wang, Dongyi</au><au>Tao, Yang</au><au>Cheng, Wenyong</au><au>Li, Jing</au><au>Liu, Zehan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</atitle><jtitle>Applied sciences</jtitle><date>2019</date><risdate>2019</risdate><volume>9</volume><issue>5</issue><spage>852</spage><pages>852-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9050852</doi><orcidid>https://orcid.org/0000-0002-1224-5529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2019, Vol.9 (5), p.852
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a03236082c6040ea9c544a3c83052e00
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Adaptive systems
Algorithms
autoencoder
Bit error rate
Communication
Communications systems
Constellations
Deep learning
Distribution functions
end-to-end learning
Fourier transforms
Mapping
Methods
Neural networks
Optical communication
Optical wireless
Orthogonal Frequency Division Multiplexing
peak-to-average power ratio
Photonics
Subcarriers
Wireless networks
title The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Extended%20SLM%20Combined%20Autoencoder%20of%20the%20PAPR%20Reduction%20Scheme%20in%20DCO-OFDM%20Systems&rft.jtitle=Applied%20sciences&rft.au=Hao,%20Lili&rft.date=2019&rft.volume=9&rft.issue=5&rft.spage=852&rft.pages=852-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9050852&rft_dat=%3Cproquest_doaj_%3E2250570660%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250570660&rft_id=info:pmid/&rfr_iscdi=true