Loading…
The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems
End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages...
Saved in:
Published in: | Applied sciences 2019, Vol.9 (5), p.852 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613 |
container_end_page | |
container_issue | 5 |
container_start_page | 852 |
container_title | Applied sciences |
container_volume | 9 |
creator | Hao, Lili Wang, Dongyi Tao, Yang Cheng, Wenyong Li, Jing Liu, Zehan |
description | End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods. |
doi_str_mv | 10.3390/app9050852 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a03236082c6040ea9c544a3c83052e00</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a03236082c6040ea9c544a3c83052e00</doaj_id><sourcerecordid>2250570660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</originalsourceid><addsrcrecordid>eNpNkUtLw0AUhYMoWGo3_oIBd0L0zjtZlrTVQqWlrW6H6WRiU9pMnEzA_ntTK-rd3AeH71w4UXSL4YHSFB51XafAIeHkIuoRkCKmDMvLf_N1NGiaHXSVYppg6EVv661F489gq9zmaDV7QZk7bMqqW4ZtcLYyLrceuQKFTrgYLpZoafPWhNJVaGW29mBRWaFRNo_nk9ELWh2bYA_NTXRV6H1jBz-9H71OxuvsOZ7Nn6bZcBYbKnCIiWaMAtlIwgtgYIgRRhSEa8FASiPTAudSSGDYFJjlG665zhnnxjItOwLtR9MzN3d6p2pfHrQ_KqdL9X1w_l1pH0qzt0oDJVRA0nl0VlanhjOmqUkocGIBOtbdmVV799HaJqida33Vva8I4cAlCHFS3Z9Vxrum8bb4dcWgTjGovxjoF-t_daQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250570660</pqid></control><display><type>article</type><title>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hao, Lili ; Wang, Dongyi ; Tao, Yang ; Cheng, Wenyong ; Li, Jing ; Liu, Zehan</creator><creatorcontrib>Hao, Lili ; Wang, Dongyi ; Tao, Yang ; Cheng, Wenyong ; Li, Jing ; Liu, Zehan</creatorcontrib><description>End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9050852</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive systems ; Algorithms ; autoencoder ; Bit error rate ; Communication ; Communications systems ; Constellations ; Deep learning ; Distribution functions ; end-to-end learning ; Fourier transforms ; Mapping ; Methods ; Neural networks ; Optical communication ; Optical wireless ; Orthogonal Frequency Division Multiplexing ; peak-to-average power ratio ; Photonics ; Subcarriers ; Wireless networks</subject><ispartof>Applied sciences, 2019, Vol.9 (5), p.852</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</citedby><cites>FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</cites><orcidid>0000-0002-1224-5529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2250570660/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2250570660?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,4025,25754,27924,27925,27926,37013,44591,75127</link.rule.ids></links><search><creatorcontrib>Hao, Lili</creatorcontrib><creatorcontrib>Wang, Dongyi</creatorcontrib><creatorcontrib>Tao, Yang</creatorcontrib><creatorcontrib>Cheng, Wenyong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Zehan</creatorcontrib><title>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</title><title>Applied sciences</title><description>End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>autoencoder</subject><subject>Bit error rate</subject><subject>Communication</subject><subject>Communications systems</subject><subject>Constellations</subject><subject>Deep learning</subject><subject>Distribution functions</subject><subject>end-to-end learning</subject><subject>Fourier transforms</subject><subject>Mapping</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optical communication</subject><subject>Optical wireless</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>peak-to-average power ratio</subject><subject>Photonics</subject><subject>Subcarriers</subject><subject>Wireless networks</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLw0AUhYMoWGo3_oIBd0L0zjtZlrTVQqWlrW6H6WRiU9pMnEzA_ntTK-rd3AeH71w4UXSL4YHSFB51XafAIeHkIuoRkCKmDMvLf_N1NGiaHXSVYppg6EVv661F489gq9zmaDV7QZk7bMqqW4ZtcLYyLrceuQKFTrgYLpZoafPWhNJVaGW29mBRWaFRNo_nk9ELWh2bYA_NTXRV6H1jBz-9H71OxuvsOZ7Nn6bZcBYbKnCIiWaMAtlIwgtgYIgRRhSEa8FASiPTAudSSGDYFJjlG665zhnnxjItOwLtR9MzN3d6p2pfHrQ_KqdL9X1w_l1pH0qzt0oDJVRA0nl0VlanhjOmqUkocGIBOtbdmVV799HaJqida33Vva8I4cAlCHFS3Z9Vxrum8bb4dcWgTjGovxjoF-t_daQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Hao, Lili</creator><creator>Wang, Dongyi</creator><creator>Tao, Yang</creator><creator>Cheng, Wenyong</creator><creator>Li, Jing</creator><creator>Liu, Zehan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1224-5529</orcidid></search><sort><creationdate>2019</creationdate><title>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</title><author>Hao, Lili ; Wang, Dongyi ; Tao, Yang ; Cheng, Wenyong ; Li, Jing ; Liu, Zehan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>autoencoder</topic><topic>Bit error rate</topic><topic>Communication</topic><topic>Communications systems</topic><topic>Constellations</topic><topic>Deep learning</topic><topic>Distribution functions</topic><topic>end-to-end learning</topic><topic>Fourier transforms</topic><topic>Mapping</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optical communication</topic><topic>Optical wireless</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>peak-to-average power ratio</topic><topic>Photonics</topic><topic>Subcarriers</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Lili</creatorcontrib><creatorcontrib>Wang, Dongyi</creatorcontrib><creatorcontrib>Tao, Yang</creatorcontrib><creatorcontrib>Cheng, Wenyong</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Liu, Zehan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Lili</au><au>Wang, Dongyi</au><au>Tao, Yang</au><au>Cheng, Wenyong</au><au>Li, Jing</au><au>Liu, Zehan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems</atitle><jtitle>Applied sciences</jtitle><date>2019</date><risdate>2019</risdate><volume>9</volume><issue>5</issue><spage>852</spage><pages>852-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>End-to-end learning in optical communication systems is a promising technique to solve difficult communication problems, especially for peak to average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems. The less complex, highly adaptive hardware and advantages in the analysis of unknown or complex channels make deep learning a valid tool to improve system performance. In this paper, we propose an autoencoder network combined with extended selected mapping methods (ESLM-AE) to reduce the PAPR for the DC-biased optical OFDM system and to minimize the bit error rate (BER). The constellation mapping/de-mapping of the transmitted symbols and the phase factor of each subcarrier are acquired and optimized adaptively by training the autoencoder with a combined loss function. In the loss function, both the PAPR and BER performance are taken into account. The simulation results show that a significant PAPR reduction of more than 10 dB has been achieved by using the ESLM-AE scheme in terms of the complementary cumulative distribution function. Furthermore, the proposed scheme exhibits better BER performance compared to the standard PAPR reduction methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9050852</doi><orcidid>https://orcid.org/0000-0002-1224-5529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2019, Vol.9 (5), p.852 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a03236082c6040ea9c544a3c83052e00 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Adaptive systems Algorithms autoencoder Bit error rate Communication Communications systems Constellations Deep learning Distribution functions end-to-end learning Fourier transforms Mapping Methods Neural networks Optical communication Optical wireless Orthogonal Frequency Division Multiplexing peak-to-average power ratio Photonics Subcarriers Wireless networks |
title | The Extended SLM Combined Autoencoder of the PAPR Reduction Scheme in DCO-OFDM Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Extended%20SLM%20Combined%20Autoencoder%20of%20the%20PAPR%20Reduction%20Scheme%20in%20DCO-OFDM%20Systems&rft.jtitle=Applied%20sciences&rft.au=Hao,%20Lili&rft.date=2019&rft.volume=9&rft.issue=5&rft.spage=852&rft.pages=852-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9050852&rft_dat=%3Cproquest_doaj_%3E2250570660%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2a44302b725f040c2c6c6f25a64077c79f1d767041cf14db5a5ad455ce4a73613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2250570660&rft_id=info:pmid/&rfr_iscdi=true |