Loading…

Exploring CVD Method for Synthesizing Carbon–Carbon Composites as Materials to Contact with Nerve Tissue

The main purpose of these studies was to obtain carbon–carbon composites with a core built of carbon fibers and a matrix in the form of pyrolytic carbon (PyC), obtained by using the chemical vapor deposition (CVD) method with direct electrical heating of a bundle of carbon fibers as a potential elec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional biomaterials 2023-08, Vol.14 (9), p.443
Main Authors: Fraczek-Szczypta, Aneta, Kondracka, Natalia, Zambrzycki, Marcel, Gubernat, Maciej, Czaja, Pawel, Pawlyta, Miroslawa, Jelen, Piotr, Wielowski, Ryszard, Jantas, Danuta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-5add1aee66674d4ffe4548aabe7fe8b6ed53118ad8fd9236fe0bfc1eef21f2943
cites cdi_FETCH-LOGICAL-c492t-5add1aee66674d4ffe4548aabe7fe8b6ed53118ad8fd9236fe0bfc1eef21f2943
container_end_page
container_issue 9
container_start_page 443
container_title Journal of functional biomaterials
container_volume 14
creator Fraczek-Szczypta, Aneta
Kondracka, Natalia
Zambrzycki, Marcel
Gubernat, Maciej
Czaja, Pawel
Pawlyta, Miroslawa
Jelen, Piotr
Wielowski, Ryszard
Jantas, Danuta
description The main purpose of these studies was to obtain carbon–carbon composites with a core built of carbon fibers and a matrix in the form of pyrolytic carbon (PyC), obtained by using the chemical vapor deposition (CVD) method with direct electrical heating of a bundle of carbon fibers as a potential electrode material for nerve tissue stimulation. The methods used for the synthesis of PyC proposed in this paper allow us, with the appropriate selection of parameters, to obtain reproducible composites in the form of rods with diameters of about 300 µm in 120 s (CF_PyC_120). To evaluate the materials, various methods such as scanning electron microscopy (SEM), scanning transmission electron microscope (STEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and tensiometer techniques were used to study their microstructural, structural, chemical composition, surface morphology, and surface wettability. Assessing their applicability for contact with nervous tissue cells, the evaluation of cytotoxicity and biocompatibility using the SH-SY5Y human neuroblastoma cell line was performed. Viability and cytotoxicity tests (WST-1 and LDH release) along with cell morphology examination demonstrated that the CF_PyC_120 composites showed high biocompatibility compared to the reference sample (Pt wire), and the best adhesion of cells to the surface among all tested materials.
doi_str_mv 10.3390/jfb14090443
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a04a4535bf514ec480116c444a19fb79</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771808086</galeid><doaj_id>oai_doaj_org_article_a04a4535bf514ec480116c444a19fb79</doaj_id><sourcerecordid>A771808086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-5add1aee66674d4ffe4548aabe7fe8b6ed53118ad8fd9236fe0bfc1eef21f2943</originalsourceid><addsrcrecordid>eNpdks1u1DAQxyMEolXpiRewxAUJbbFjxx8nVC0FKrVwoHC1HGe86yiJF9splBPvwBvyJLibCrV4Dh7N_Oc3Y2uq6jnBJ5Qq_Lp3LWFYYcboo-qwxkKtmJL08T3_oDpOqcflcCxrwp5WB1SIhslGHFb92Y_dEKKfNmj99S26hLwNHXIhos83U95C8j_3ORPbMP359Xtx0DqMu5B8hoRMQpcmQ_RmSCiHkpqysRl993mLPkK8BnTlU5rhWfXEFQ0c391H1Zd3Z1frD6uLT-_P16cXK8tUnVeN6TpiADjngnXMOWBlVmNaEA5ky6FrKCHSdNJ1qqbcAW6dJQCuJq5WjB5V5wu3C6bXu-hHE290MF7vAyFutInZ2wG0wcywhjatawgDyyQmhFvGmCHKtUIV1puFtZvbEToLU45meAB9mJn8Vm_CtSa4oTWVshBe3hFi-DZDynr0ycIwmAnCnHQtueKEMyqK9MV_0j7McSp_tVfRRlDBi-pkUW1MeYGfXCiNbbEORm_DBM6X-KkQROJitwWvlgIbQ0oR3L_xCda3S6TvLRH9C2VIuiA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869357376</pqid></control><display><type>article</type><title>Exploring CVD Method for Synthesizing Carbon–Carbon Composites as Materials to Contact with Nerve Tissue</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Fraczek-Szczypta, Aneta ; Kondracka, Natalia ; Zambrzycki, Marcel ; Gubernat, Maciej ; Czaja, Pawel ; Pawlyta, Miroslawa ; Jelen, Piotr ; Wielowski, Ryszard ; Jantas, Danuta</creator><creatorcontrib>Fraczek-Szczypta, Aneta ; Kondracka, Natalia ; Zambrzycki, Marcel ; Gubernat, Maciej ; Czaja, Pawel ; Pawlyta, Miroslawa ; Jelen, Piotr ; Wielowski, Ryszard ; Jantas, Danuta</creatorcontrib><description>The main purpose of these studies was to obtain carbon–carbon composites with a core built of carbon fibers and a matrix in the form of pyrolytic carbon (PyC), obtained by using the chemical vapor deposition (CVD) method with direct electrical heating of a bundle of carbon fibers as a potential electrode material for nerve tissue stimulation. The methods used for the synthesis of PyC proposed in this paper allow us, with the appropriate selection of parameters, to obtain reproducible composites in the form of rods with diameters of about 300 µm in 120 s (CF_PyC_120). To evaluate the materials, various methods such as scanning electron microscopy (SEM), scanning transmission electron microscope (STEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and tensiometer techniques were used to study their microstructural, structural, chemical composition, surface morphology, and surface wettability. Assessing their applicability for contact with nervous tissue cells, the evaluation of cytotoxicity and biocompatibility using the SH-SY5Y human neuroblastoma cell line was performed. Viability and cytotoxicity tests (WST-1 and LDH release) along with cell morphology examination demonstrated that the CF_PyC_120 composites showed high biocompatibility compared to the reference sample (Pt wire), and the best adhesion of cells to the surface among all tested materials.</description><identifier>ISSN: 2079-4983</identifier><identifier>EISSN: 2079-4983</identifier><identifier>DOI: 10.3390/jfb14090443</identifier><identifier>PMID: 37754857</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biocompatibility ; Brain research ; C/C composites ; Carbon ; Carbon fibers ; Cell morphology ; Chemical composition ; Chemical vapor deposition ; Composite materials ; CVD method ; Cytology ; Cytotoxicity ; Electric contacts ; Electrode materials ; Electrodes ; Electron diffraction ; Evaluation ; Fibers ; High resolution electron microscopy ; materials for nerve stimulation ; Mechanical properties ; Methods ; Microscopy ; Morphology ; Nerves ; Nervous system ; Nervous tissues ; Parkinson's disease ; Photoelectron spectroscopy ; Photoelectrons ; pyrolytic carbon ; Raman spectroscopy ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Spectroscopy ; Tensile strength ; Toxicity ; Transmission electron microscopes ; Transmission electron microscopy ; Wettability ; X ray photoelectron spectroscopy ; X-ray spectroscopy</subject><ispartof>Journal of functional biomaterials, 2023-08, Vol.14 (9), p.443</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-5add1aee66674d4ffe4548aabe7fe8b6ed53118ad8fd9236fe0bfc1eef21f2943</citedby><cites>FETCH-LOGICAL-c492t-5add1aee66674d4ffe4548aabe7fe8b6ed53118ad8fd9236fe0bfc1eef21f2943</cites><orcidid>0009-0005-6565-1984 ; 0000-0003-2905-6078 ; 0000-0002-7941-426X ; 0000-0002-6789-4489 ; 0000-0002-2055-1489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869357376/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869357376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53770,53772,74873</link.rule.ids></links><search><creatorcontrib>Fraczek-Szczypta, Aneta</creatorcontrib><creatorcontrib>Kondracka, Natalia</creatorcontrib><creatorcontrib>Zambrzycki, Marcel</creatorcontrib><creatorcontrib>Gubernat, Maciej</creatorcontrib><creatorcontrib>Czaja, Pawel</creatorcontrib><creatorcontrib>Pawlyta, Miroslawa</creatorcontrib><creatorcontrib>Jelen, Piotr</creatorcontrib><creatorcontrib>Wielowski, Ryszard</creatorcontrib><creatorcontrib>Jantas, Danuta</creatorcontrib><title>Exploring CVD Method for Synthesizing Carbon–Carbon Composites as Materials to Contact with Nerve Tissue</title><title>Journal of functional biomaterials</title><description>The main purpose of these studies was to obtain carbon–carbon composites with a core built of carbon fibers and a matrix in the form of pyrolytic carbon (PyC), obtained by using the chemical vapor deposition (CVD) method with direct electrical heating of a bundle of carbon fibers as a potential electrode material for nerve tissue stimulation. The methods used for the synthesis of PyC proposed in this paper allow us, with the appropriate selection of parameters, to obtain reproducible composites in the form of rods with diameters of about 300 µm in 120 s (CF_PyC_120). To evaluate the materials, various methods such as scanning electron microscopy (SEM), scanning transmission electron microscope (STEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and tensiometer techniques were used to study their microstructural, structural, chemical composition, surface morphology, and surface wettability. Assessing their applicability for contact with nervous tissue cells, the evaluation of cytotoxicity and biocompatibility using the SH-SY5Y human neuroblastoma cell line was performed. Viability and cytotoxicity tests (WST-1 and LDH release) along with cell morphology examination demonstrated that the CF_PyC_120 composites showed high biocompatibility compared to the reference sample (Pt wire), and the best adhesion of cells to the surface among all tested materials.</description><subject>Biocompatibility</subject><subject>Brain research</subject><subject>C/C composites</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Cell morphology</subject><subject>Chemical composition</subject><subject>Chemical vapor deposition</subject><subject>Composite materials</subject><subject>CVD method</subject><subject>Cytology</subject><subject>Cytotoxicity</subject><subject>Electric contacts</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron diffraction</subject><subject>Evaluation</subject><subject>Fibers</subject><subject>High resolution electron microscopy</subject><subject>materials for nerve stimulation</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nerves</subject><subject>Nervous system</subject><subject>Nervous tissues</subject><subject>Parkinson's disease</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>pyrolytic carbon</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Spectroscopy</subject><subject>Tensile strength</subject><subject>Toxicity</subject><subject>Transmission electron microscopes</subject><subject>Transmission electron microscopy</subject><subject>Wettability</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray spectroscopy</subject><issn>2079-4983</issn><issn>2079-4983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1u1DAQxyMEolXpiRewxAUJbbFjxx8nVC0FKrVwoHC1HGe86yiJF9splBPvwBvyJLibCrV4Dh7N_Oc3Y2uq6jnBJ5Qq_Lp3LWFYYcboo-qwxkKtmJL08T3_oDpOqcflcCxrwp5WB1SIhslGHFb92Y_dEKKfNmj99S26hLwNHXIhos83U95C8j_3ORPbMP359Xtx0DqMu5B8hoRMQpcmQ_RmSCiHkpqysRl993mLPkK8BnTlU5rhWfXEFQ0c391H1Zd3Z1frD6uLT-_P16cXK8tUnVeN6TpiADjngnXMOWBlVmNaEA5ky6FrKCHSdNJ1qqbcAW6dJQCuJq5WjB5V5wu3C6bXu-hHE290MF7vAyFutInZ2wG0wcywhjatawgDyyQmhFvGmCHKtUIV1puFtZvbEToLU45meAB9mJn8Vm_CtSa4oTWVshBe3hFi-DZDynr0ycIwmAnCnHQtueKEMyqK9MV_0j7McSp_tVfRRlDBi-pkUW1MeYGfXCiNbbEORm_DBM6X-KkQROJitwWvlgIbQ0oR3L_xCda3S6TvLRH9C2VIuiA</recordid><startdate>20230828</startdate><enddate>20230828</enddate><creator>Fraczek-Szczypta, Aneta</creator><creator>Kondracka, Natalia</creator><creator>Zambrzycki, Marcel</creator><creator>Gubernat, Maciej</creator><creator>Czaja, Pawel</creator><creator>Pawlyta, Miroslawa</creator><creator>Jelen, Piotr</creator><creator>Wielowski, Ryszard</creator><creator>Jantas, Danuta</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-6565-1984</orcidid><orcidid>https://orcid.org/0000-0003-2905-6078</orcidid><orcidid>https://orcid.org/0000-0002-7941-426X</orcidid><orcidid>https://orcid.org/0000-0002-6789-4489</orcidid><orcidid>https://orcid.org/0000-0002-2055-1489</orcidid></search><sort><creationdate>20230828</creationdate><title>Exploring CVD Method for Synthesizing Carbon–Carbon Composites as Materials to Contact with Nerve Tissue</title><author>Fraczek-Szczypta, Aneta ; Kondracka, Natalia ; Zambrzycki, Marcel ; Gubernat, Maciej ; Czaja, Pawel ; Pawlyta, Miroslawa ; Jelen, Piotr ; Wielowski, Ryszard ; Jantas, Danuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-5add1aee66674d4ffe4548aabe7fe8b6ed53118ad8fd9236fe0bfc1eef21f2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Brain research</topic><topic>C/C composites</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Cell morphology</topic><topic>Chemical composition</topic><topic>Chemical vapor deposition</topic><topic>Composite materials</topic><topic>CVD method</topic><topic>Cytology</topic><topic>Cytotoxicity</topic><topic>Electric contacts</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron diffraction</topic><topic>Evaluation</topic><topic>Fibers</topic><topic>High resolution electron microscopy</topic><topic>materials for nerve stimulation</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nerves</topic><topic>Nervous system</topic><topic>Nervous tissues</topic><topic>Parkinson's disease</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>pyrolytic carbon</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Spectroscopy</topic><topic>Tensile strength</topic><topic>Toxicity</topic><topic>Transmission electron microscopes</topic><topic>Transmission electron microscopy</topic><topic>Wettability</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraczek-Szczypta, Aneta</creatorcontrib><creatorcontrib>Kondracka, Natalia</creatorcontrib><creatorcontrib>Zambrzycki, Marcel</creatorcontrib><creatorcontrib>Gubernat, Maciej</creatorcontrib><creatorcontrib>Czaja, Pawel</creatorcontrib><creatorcontrib>Pawlyta, Miroslawa</creatorcontrib><creatorcontrib>Jelen, Piotr</creatorcontrib><creatorcontrib>Wielowski, Ryszard</creatorcontrib><creatorcontrib>Jantas, Danuta</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of functional biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraczek-Szczypta, Aneta</au><au>Kondracka, Natalia</au><au>Zambrzycki, Marcel</au><au>Gubernat, Maciej</au><au>Czaja, Pawel</au><au>Pawlyta, Miroslawa</au><au>Jelen, Piotr</au><au>Wielowski, Ryszard</au><au>Jantas, Danuta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring CVD Method for Synthesizing Carbon–Carbon Composites as Materials to Contact with Nerve Tissue</atitle><jtitle>Journal of functional biomaterials</jtitle><date>2023-08-28</date><risdate>2023</risdate><volume>14</volume><issue>9</issue><spage>443</spage><pages>443-</pages><issn>2079-4983</issn><eissn>2079-4983</eissn><abstract>The main purpose of these studies was to obtain carbon–carbon composites with a core built of carbon fibers and a matrix in the form of pyrolytic carbon (PyC), obtained by using the chemical vapor deposition (CVD) method with direct electrical heating of a bundle of carbon fibers as a potential electrode material for nerve tissue stimulation. The methods used for the synthesis of PyC proposed in this paper allow us, with the appropriate selection of parameters, to obtain reproducible composites in the form of rods with diameters of about 300 µm in 120 s (CF_PyC_120). To evaluate the materials, various methods such as scanning electron microscopy (SEM), scanning transmission electron microscope (STEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and tensiometer techniques were used to study their microstructural, structural, chemical composition, surface morphology, and surface wettability. Assessing their applicability for contact with nervous tissue cells, the evaluation of cytotoxicity and biocompatibility using the SH-SY5Y human neuroblastoma cell line was performed. Viability and cytotoxicity tests (WST-1 and LDH release) along with cell morphology examination demonstrated that the CF_PyC_120 composites showed high biocompatibility compared to the reference sample (Pt wire), and the best adhesion of cells to the surface among all tested materials.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37754857</pmid><doi>10.3390/jfb14090443</doi><orcidid>https://orcid.org/0009-0005-6565-1984</orcidid><orcidid>https://orcid.org/0000-0003-2905-6078</orcidid><orcidid>https://orcid.org/0000-0002-7941-426X</orcidid><orcidid>https://orcid.org/0000-0002-6789-4489</orcidid><orcidid>https://orcid.org/0000-0002-2055-1489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4983
ispartof Journal of functional biomaterials, 2023-08, Vol.14 (9), p.443
issn 2079-4983
2079-4983
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a04a4535bf514ec480116c444a19fb79
source Publicly Available Content (ProQuest); PubMed Central
subjects Biocompatibility
Brain research
C/C composites
Carbon
Carbon fibers
Cell morphology
Chemical composition
Chemical vapor deposition
Composite materials
CVD method
Cytology
Cytotoxicity
Electric contacts
Electrode materials
Electrodes
Electron diffraction
Evaluation
Fibers
High resolution electron microscopy
materials for nerve stimulation
Mechanical properties
Methods
Microscopy
Morphology
Nerves
Nervous system
Nervous tissues
Parkinson's disease
Photoelectron spectroscopy
Photoelectrons
pyrolytic carbon
Raman spectroscopy
Scanning electron microscopy
Scanning transmission electron microscopy
Spectroscopy
Tensile strength
Toxicity
Transmission electron microscopes
Transmission electron microscopy
Wettability
X ray photoelectron spectroscopy
X-ray spectroscopy
title Exploring CVD Method for Synthesizing Carbon–Carbon Composites as Materials to Contact with Nerve Tissue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20CVD%20Method%20for%20Synthesizing%20Carbon%E2%80%93Carbon%20Composites%20as%20Materials%20to%20Contact%20with%20Nerve%20Tissue&rft.jtitle=Journal%20of%20functional%20biomaterials&rft.au=Fraczek-Szczypta,%20Aneta&rft.date=2023-08-28&rft.volume=14&rft.issue=9&rft.spage=443&rft.pages=443-&rft.issn=2079-4983&rft.eissn=2079-4983&rft_id=info:doi/10.3390/jfb14090443&rft_dat=%3Cgale_doaj_%3EA771808086%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-5add1aee66674d4ffe4548aabe7fe8b6ed53118ad8fd9236fe0bfc1eef21f2943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869357376&rft_id=info:pmid/37754857&rft_galeid=A771808086&rfr_iscdi=true