Loading…

SECIMTools: a suite of metabolomics data analysis tools

Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While te...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2018-04, Vol.19 (1), p.151-151, Article 151
Main Authors: Kirpich, Alexander S, Ibarra, Miguel, Moskalenko, Oleksandr, Fear, Justin M, Gerken, Joseph, Mi, Xinlei, Ashrafi, Ali, Morse, Alison M, McIntyre, Lauren M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483
cites cdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483
container_end_page 151
container_issue 1
container_start_page 151
container_title BMC bioinformatics
container_volume 19
creator Kirpich, Alexander S
Ibarra, Miguel
Moskalenko, Oleksandr
Fear, Justin M
Gerken, Joseph
Mi, Xinlei
Ashrafi, Ali
Morse, Alison M
McIntyre, Lauren M
description Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.
doi_str_mv 10.1186/s12859-018-2134-1
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a04b0155766245dd8182349dfa395722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546834226</galeid><doaj_id>oai_doaj_org_article_a04b0155766245dd8182349dfa395722</doaj_id><sourcerecordid>A546834226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</originalsourceid><addsrcrecordid>eNptkt9r1TAUx4sobl79A3yRgi_uoTMnTZrUB2Fcpl6YCG4-h5MfvWa0zWxScf_9cu0cK0gekpx8vl9ODt-ieA3kFEA27yNQyduKgKwo1KyCJ8UxMAH5RvjTR-ej4kWM14SAkIQ_L45o2wgJNRwX4vJ8u_t6FUIfP5RYxtknV4auHFxCHfoweBNLiwlLHLG_jT6W6QC_LJ512Ef36n7fFD8-nV9tv1QX3z7vtmcXleFNk6qOgCWaodW5UYG8lYI2lGunsXbCMQRirdaojdCacmPaThNnnNMStWay3hS7xdcGvFY3kx9wulUBvfpbCNNe4ZS86Z1CwjQBzkXTUMatlSBpzVrbYd1yQWn2-rh43cx6cNa4MU3Yr0zXL6P_qfbht-ItkOyZDd7dG0zh1-xiUoOPxvU9ji7MUVFCZcta2tQZfbuge8yt-bEL2dEccHXGWSNrRjO2KU7_Q-VlXR58GF3nc30lOFkJMpPcn7THOUa1u_y-ZmFhzRRinFz38FMg6pAfteRH5fyoQ34UZM2bxyN6UPwLTH0Hdgu-YA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028949263</pqid></control><display><type>article</type><title>SECIMTools: a suite of metabolomics data analysis tools</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kirpich, Alexander S ; Ibarra, Miguel ; Moskalenko, Oleksandr ; Fear, Justin M ; Gerken, Joseph ; Mi, Xinlei ; Ashrafi, Ali ; Morse, Alison M ; McIntyre, Lauren M</creator><creatorcontrib>Kirpich, Alexander S ; Ibarra, Miguel ; Moskalenko, Oleksandr ; Fear, Justin M ; Gerken, Joseph ; Mi, Xinlei ; Ashrafi, Ali ; Morse, Alison M ; McIntyre, Lauren M</creatorcontrib><description>Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-018-2134-1</identifier><identifier>PMID: 29678131</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>High-throughput screening (Biochemical assaying) ; Metabolites ; Precision medicine ; Software</subject><ispartof>BMC bioinformatics, 2018-04, Vol.19 (1), p.151-151, Article 151</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</citedby><cites>FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910624/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910624/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29678131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirpich, Alexander S</creatorcontrib><creatorcontrib>Ibarra, Miguel</creatorcontrib><creatorcontrib>Moskalenko, Oleksandr</creatorcontrib><creatorcontrib>Fear, Justin M</creatorcontrib><creatorcontrib>Gerken, Joseph</creatorcontrib><creatorcontrib>Mi, Xinlei</creatorcontrib><creatorcontrib>Ashrafi, Ali</creatorcontrib><creatorcontrib>Morse, Alison M</creatorcontrib><creatorcontrib>McIntyre, Lauren M</creatorcontrib><title>SECIMTools: a suite of metabolomics data analysis tools</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.</description><subject>High-throughput screening (Biochemical assaying)</subject><subject>Metabolites</subject><subject>Precision medicine</subject><subject>Software</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkt9r1TAUx4sobl79A3yRgi_uoTMnTZrUB2Fcpl6YCG4-h5MfvWa0zWxScf_9cu0cK0gekpx8vl9ODt-ieA3kFEA27yNQyduKgKwo1KyCJ8UxMAH5RvjTR-ej4kWM14SAkIQ_L45o2wgJNRwX4vJ8u_t6FUIfP5RYxtknV4auHFxCHfoweBNLiwlLHLG_jT6W6QC_LJ512Ef36n7fFD8-nV9tv1QX3z7vtmcXleFNk6qOgCWaodW5UYG8lYI2lGunsXbCMQRirdaojdCacmPaThNnnNMStWay3hS7xdcGvFY3kx9wulUBvfpbCNNe4ZS86Z1CwjQBzkXTUMatlSBpzVrbYd1yQWn2-rh43cx6cNa4MU3Yr0zXL6P_qfbht-ItkOyZDd7dG0zh1-xiUoOPxvU9ji7MUVFCZcta2tQZfbuge8yt-bEL2dEccHXGWSNrRjO2KU7_Q-VlXR58GF3nc30lOFkJMpPcn7THOUa1u_y-ZmFhzRRinFz38FMg6pAfteRH5fyoQ34UZM2bxyN6UPwLTH0Hdgu-YA</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Kirpich, Alexander S</creator><creator>Ibarra, Miguel</creator><creator>Moskalenko, Oleksandr</creator><creator>Fear, Justin M</creator><creator>Gerken, Joseph</creator><creator>Mi, Xinlei</creator><creator>Ashrafi, Ali</creator><creator>Morse, Alison M</creator><creator>McIntyre, Lauren M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180420</creationdate><title>SECIMTools: a suite of metabolomics data analysis tools</title><author>Kirpich, Alexander S ; Ibarra, Miguel ; Moskalenko, Oleksandr ; Fear, Justin M ; Gerken, Joseph ; Mi, Xinlei ; Ashrafi, Ali ; Morse, Alison M ; McIntyre, Lauren M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>High-throughput screening (Biochemical assaying)</topic><topic>Metabolites</topic><topic>Precision medicine</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirpich, Alexander S</creatorcontrib><creatorcontrib>Ibarra, Miguel</creatorcontrib><creatorcontrib>Moskalenko, Oleksandr</creatorcontrib><creatorcontrib>Fear, Justin M</creatorcontrib><creatorcontrib>Gerken, Joseph</creatorcontrib><creatorcontrib>Mi, Xinlei</creatorcontrib><creatorcontrib>Ashrafi, Ali</creatorcontrib><creatorcontrib>Morse, Alison M</creatorcontrib><creatorcontrib>McIntyre, Lauren M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirpich, Alexander S</au><au>Ibarra, Miguel</au><au>Moskalenko, Oleksandr</au><au>Fear, Justin M</au><au>Gerken, Joseph</au><au>Mi, Xinlei</au><au>Ashrafi, Ali</au><au>Morse, Alison M</au><au>McIntyre, Lauren M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SECIMTools: a suite of metabolomics data analysis tools</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>151</spage><epage>151</epage><pages>151-151</pages><artnum>151</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>29678131</pmid><doi>10.1186/s12859-018-2134-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2105
ispartof BMC bioinformatics, 2018-04, Vol.19 (1), p.151-151, Article 151
issn 1471-2105
1471-2105
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a04b0155766245dd8182349dfa395722
source Open Access: PubMed Central; Publicly Available Content Database
subjects High-throughput screening (Biochemical assaying)
Metabolites
Precision medicine
Software
title SECIMTools: a suite of metabolomics data analysis tools
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SECIMTools:%20a%20suite%20of%20metabolomics%20data%20analysis%20tools&rft.jtitle=BMC%20bioinformatics&rft.au=Kirpich,%20Alexander%20S&rft.date=2018-04-20&rft.volume=19&rft.issue=1&rft.spage=151&rft.epage=151&rft.pages=151-151&rft.artnum=151&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-018-2134-1&rft_dat=%3Cgale_doaj_%3EA546834226%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2028949263&rft_id=info:pmid/29678131&rft_galeid=A546834226&rfr_iscdi=true