Loading…
SECIMTools: a suite of metabolomics data analysis tools
Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While te...
Saved in:
Published in: | BMC bioinformatics 2018-04, Vol.19 (1), p.151-151, Article 151 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483 |
---|---|
cites | cdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483 |
container_end_page | 151 |
container_issue | 1 |
container_start_page | 151 |
container_title | BMC bioinformatics |
container_volume | 19 |
creator | Kirpich, Alexander S Ibarra, Miguel Moskalenko, Oleksandr Fear, Justin M Gerken, Joseph Mi, Xinlei Ashrafi, Ali Morse, Alison M McIntyre, Lauren M |
description | Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists.
SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net).
SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data. |
doi_str_mv | 10.1186/s12859-018-2134-1 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a04b0155766245dd8182349dfa395722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546834226</galeid><doaj_id>oai_doaj_org_article_a04b0155766245dd8182349dfa395722</doaj_id><sourcerecordid>A546834226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</originalsourceid><addsrcrecordid>eNptkt9r1TAUx4sobl79A3yRgi_uoTMnTZrUB2Fcpl6YCG4-h5MfvWa0zWxScf_9cu0cK0gekpx8vl9ODt-ieA3kFEA27yNQyduKgKwo1KyCJ8UxMAH5RvjTR-ej4kWM14SAkIQ_L45o2wgJNRwX4vJ8u_t6FUIfP5RYxtknV4auHFxCHfoweBNLiwlLHLG_jT6W6QC_LJ512Ef36n7fFD8-nV9tv1QX3z7vtmcXleFNk6qOgCWaodW5UYG8lYI2lGunsXbCMQRirdaojdCacmPaThNnnNMStWay3hS7xdcGvFY3kx9wulUBvfpbCNNe4ZS86Z1CwjQBzkXTUMatlSBpzVrbYd1yQWn2-rh43cx6cNa4MU3Yr0zXL6P_qfbht-ItkOyZDd7dG0zh1-xiUoOPxvU9ji7MUVFCZcta2tQZfbuge8yt-bEL2dEccHXGWSNrRjO2KU7_Q-VlXR58GF3nc30lOFkJMpPcn7THOUa1u_y-ZmFhzRRinFz38FMg6pAfteRH5fyoQ34UZM2bxyN6UPwLTH0Hdgu-YA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2028949263</pqid></control><display><type>article</type><title>SECIMTools: a suite of metabolomics data analysis tools</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Kirpich, Alexander S ; Ibarra, Miguel ; Moskalenko, Oleksandr ; Fear, Justin M ; Gerken, Joseph ; Mi, Xinlei ; Ashrafi, Ali ; Morse, Alison M ; McIntyre, Lauren M</creator><creatorcontrib>Kirpich, Alexander S ; Ibarra, Miguel ; Moskalenko, Oleksandr ; Fear, Justin M ; Gerken, Joseph ; Mi, Xinlei ; Ashrafi, Ali ; Morse, Alison M ; McIntyre, Lauren M</creatorcontrib><description>Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists.
SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net).
SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-018-2134-1</identifier><identifier>PMID: 29678131</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>High-throughput screening (Biochemical assaying) ; Metabolites ; Precision medicine ; Software</subject><ispartof>BMC bioinformatics, 2018-04, Vol.19 (1), p.151-151, Article 151</ispartof><rights>COPYRIGHT 2018 BioMed Central Ltd.</rights><rights>The Author(s). 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</citedby><cites>FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910624/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910624/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29678131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirpich, Alexander S</creatorcontrib><creatorcontrib>Ibarra, Miguel</creatorcontrib><creatorcontrib>Moskalenko, Oleksandr</creatorcontrib><creatorcontrib>Fear, Justin M</creatorcontrib><creatorcontrib>Gerken, Joseph</creatorcontrib><creatorcontrib>Mi, Xinlei</creatorcontrib><creatorcontrib>Ashrafi, Ali</creatorcontrib><creatorcontrib>Morse, Alison M</creatorcontrib><creatorcontrib>McIntyre, Lauren M</creatorcontrib><title>SECIMTools: a suite of metabolomics data analysis tools</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists.
SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net).
SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.</description><subject>High-throughput screening (Biochemical assaying)</subject><subject>Metabolites</subject><subject>Precision medicine</subject><subject>Software</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkt9r1TAUx4sobl79A3yRgi_uoTMnTZrUB2Fcpl6YCG4-h5MfvWa0zWxScf_9cu0cK0gekpx8vl9ODt-ieA3kFEA27yNQyduKgKwo1KyCJ8UxMAH5RvjTR-ej4kWM14SAkIQ_L45o2wgJNRwX4vJ8u_t6FUIfP5RYxtknV4auHFxCHfoweBNLiwlLHLG_jT6W6QC_LJ512Ef36n7fFD8-nV9tv1QX3z7vtmcXleFNk6qOgCWaodW5UYG8lYI2lGunsXbCMQRirdaojdCacmPaThNnnNMStWay3hS7xdcGvFY3kx9wulUBvfpbCNNe4ZS86Z1CwjQBzkXTUMatlSBpzVrbYd1yQWn2-rh43cx6cNa4MU3Yr0zXL6P_qfbht-ItkOyZDd7dG0zh1-xiUoOPxvU9ji7MUVFCZcta2tQZfbuge8yt-bEL2dEccHXGWSNrRjO2KU7_Q-VlXR58GF3nc30lOFkJMpPcn7THOUa1u_y-ZmFhzRRinFz38FMg6pAfteRH5fyoQ34UZM2bxyN6UPwLTH0Hdgu-YA</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Kirpich, Alexander S</creator><creator>Ibarra, Miguel</creator><creator>Moskalenko, Oleksandr</creator><creator>Fear, Justin M</creator><creator>Gerken, Joseph</creator><creator>Mi, Xinlei</creator><creator>Ashrafi, Ali</creator><creator>Morse, Alison M</creator><creator>McIntyre, Lauren M</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180420</creationdate><title>SECIMTools: a suite of metabolomics data analysis tools</title><author>Kirpich, Alexander S ; Ibarra, Miguel ; Moskalenko, Oleksandr ; Fear, Justin M ; Gerken, Joseph ; Mi, Xinlei ; Ashrafi, Ali ; Morse, Alison M ; McIntyre, Lauren M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>High-throughput screening (Biochemical assaying)</topic><topic>Metabolites</topic><topic>Precision medicine</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirpich, Alexander S</creatorcontrib><creatorcontrib>Ibarra, Miguel</creatorcontrib><creatorcontrib>Moskalenko, Oleksandr</creatorcontrib><creatorcontrib>Fear, Justin M</creatorcontrib><creatorcontrib>Gerken, Joseph</creatorcontrib><creatorcontrib>Mi, Xinlei</creatorcontrib><creatorcontrib>Ashrafi, Ali</creatorcontrib><creatorcontrib>Morse, Alison M</creatorcontrib><creatorcontrib>McIntyre, Lauren M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirpich, Alexander S</au><au>Ibarra, Miguel</au><au>Moskalenko, Oleksandr</au><au>Fear, Justin M</au><au>Gerken, Joseph</au><au>Mi, Xinlei</au><au>Ashrafi, Ali</au><au>Morse, Alison M</au><au>McIntyre, Lauren M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SECIMTools: a suite of metabolomics data analysis tools</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>151</spage><epage>151</epage><pages>151-151</pages><artnum>151</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists.
SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net).
SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>29678131</pmid><doi>10.1186/s12859-018-2134-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2018-04, Vol.19 (1), p.151-151, Article 151 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a04b0155766245dd8182349dfa395722 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | High-throughput screening (Biochemical assaying) Metabolites Precision medicine Software |
title | SECIMTools: a suite of metabolomics data analysis tools |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SECIMTools:%20a%20suite%20of%20metabolomics%20data%20analysis%20tools&rft.jtitle=BMC%20bioinformatics&rft.au=Kirpich,%20Alexander%20S&rft.date=2018-04-20&rft.volume=19&rft.issue=1&rft.spage=151&rft.epage=151&rft.pages=151-151&rft.artnum=151&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-018-2134-1&rft_dat=%3Cgale_doaj_%3EA546834226%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c566t-f01d0b4adb8597a59872625beba3e7e4a10ddbbabc7bb25cc9fb0eceeb8abb483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2028949263&rft_id=info:pmid/29678131&rft_galeid=A546834226&rfr_iscdi=true |