Loading…
Closed Adsorption Heat Storage—A Life Cycle Assessment on Material and Component Levels
Closed adsorption storages have been investigated in several projects for heat storage in building applications with focus on energy density and performance. This study complements this research with the assessment of the environmental impacts over the life cycle. Global warming potential (GWP) was...
Saved in:
Published in: | Energies (Basel) 2018-12, Vol.11 (12), p.3421 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Closed adsorption storages have been investigated in several projects for heat storage in building applications with focus on energy density and performance. This study complements this research with the assessment of the environmental impacts over the life cycle. Global warming potential (GWP) was chosen as the assessment criterion. Selected sorption materials in combination with water as the refrigerant were analyzed first by themselves and then embedded in a generic storage configuration. Sensible storage in water served as the reference benchmark. Results on material and component level showed that the relative storage capacity compared to water under realistic operating conditions reached values of below 4 and 2.5, respectively, in the best cases. Since the effort for producing the sorbents as well as the auxiliary material demand for assembling storage components was significantly higher than in the reference case, the specific environmental impact per storage capacity also turned out to be ~2.5 to ~100 times higher. We therefore suggest focusing sorption storage research on applications that (a) maximize the utilization of the uptake of sorbents, (b) do not compete with water storages, and (c) require minimal auxiliary parts. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en11123421 |