Loading…
Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea
Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belongi...
Saved in:
Published in: | Plants (Basel) 2020-06, Vol.9 (6), p.799 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43 |
container_end_page | |
container_issue | 6 |
container_start_page | 799 |
container_title | Plants (Basel) |
container_volume | 9 |
creator | Singh, Shweta Bhatt, Vacha Kumar, Virender Kumawat, Surbhi Khatri, Praveen Singla, Pankaj Shivaraj, S.M. Nadaf, Altaf Deshmukh, Rupesh Sharma, Tilak Raj Sonah, Humira |
description | Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development. |
doi_str_mv | 10.3390/plants9060799 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a059497d534849dea04c39b2a921f489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a059497d534849dea04c39b2a921f489</doaj_id><sourcerecordid>2419410356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</originalsourceid><addsrcrecordid>eNpdks1rHCEUwIfS0oQ0x96FXnrZxs9xvBTSsG0DKT0kOYujbzYurk7UCeS_j8mGkq0IPp6_98OP13WfCf7GmMJnczCxFoV7LJV61x1TStlKSi7fv4mPutNStriNoU3Sf-yOGO0xl8Nw3MX1QwpL9Sma_Ihuo4NcqonOxw1KEzq_X8ycso_oJptYWljR9WOpsEMtV-8A_TDFBLRenLepoj_JQUDXM1gP5bnaB9h4g2yCvAQwn7oPkwkFTl_Xk-725_rm4vfq6u-vy4vzq5XlYqgrCW5wjgoriRwlNtPQW8JHJsBNUsJIsZ0EjP1gR2atEw1kkyKAxxbxkbOT7nLvdcls9Zz9rl1PJ-P1SyLljTa5ehtAGywUV9IJxgeuHBjMLVMjNYqSiQ-qub7vXfMy7sBZiDWbcCA93In-Tm_Sg5ZMCN6LJvj6KsjpfoFS9c4XC6F9HqSlaMqJ4gQz0Tf0y3_oNi05tqd6oShmhOFGrfaUzamUDNO_wxCsnxtDHzQGewJu2K0V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419203130</pqid></control><display><type>article</type><title>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Singh, Shweta ; Bhatt, Vacha ; Kumar, Virender ; Kumawat, Surbhi ; Khatri, Praveen ; Singla, Pankaj ; Shivaraj, S.M. ; Nadaf, Altaf ; Deshmukh, Rupesh ; Sharma, Tilak Raj ; Sonah, Humira</creator><creatorcontrib>Singh, Shweta ; Bhatt, Vacha ; Kumar, Virender ; Kumawat, Surbhi ; Khatri, Praveen ; Singla, Pankaj ; Shivaraj, S.M. ; Nadaf, Altaf ; Deshmukh, Rupesh ; Sharma, Tilak Raj ; Sonah, Humira</creatorcontrib><description>Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants9060799</identifier><identifier>PMID: 32604788</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alanine ; Aquaporins ; Aquilegia ; Aquilegia coerulea ; Arginine ; Asparagine ; Bioinformatics ; Cell division ; Comparative analysis ; Evolution ; Flowers & plants ; Gene expression ; Genomes ; Identification ; Localization ; Morphology ; Nectar ; NPA motifs ; Phylogenetics ; Phylogeny ; Physiology ; Poplar ; Proline ; Protein structure ; Proteins ; Ribonucleic acid ; RNA ; Selectivity ; Servers ; Software ; Solutes ; Structural analysis ; transcriptomics ; Transportation systems ; transporter ; Trees</subject><ispartof>Plants (Basel), 2020-06, Vol.9 (6), p.799</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</citedby><cites>FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</cites><orcidid>0000-0001-6589-3450 ; 0000-0003-4796-6120 ; 0000-0003-4167-6552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2419203130/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2419203130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Singh, Shweta</creatorcontrib><creatorcontrib>Bhatt, Vacha</creatorcontrib><creatorcontrib>Kumar, Virender</creatorcontrib><creatorcontrib>Kumawat, Surbhi</creatorcontrib><creatorcontrib>Khatri, Praveen</creatorcontrib><creatorcontrib>Singla, Pankaj</creatorcontrib><creatorcontrib>Shivaraj, S.M.</creatorcontrib><creatorcontrib>Nadaf, Altaf</creatorcontrib><creatorcontrib>Deshmukh, Rupesh</creatorcontrib><creatorcontrib>Sharma, Tilak Raj</creatorcontrib><creatorcontrib>Sonah, Humira</creatorcontrib><title>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</title><title>Plants (Basel)</title><description>Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.</description><subject>Alanine</subject><subject>Aquaporins</subject><subject>Aquilegia</subject><subject>Aquilegia coerulea</subject><subject>Arginine</subject><subject>Asparagine</subject><subject>Bioinformatics</subject><subject>Cell division</subject><subject>Comparative analysis</subject><subject>Evolution</subject><subject>Flowers & plants</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Identification</subject><subject>Localization</subject><subject>Morphology</subject><subject>Nectar</subject><subject>NPA motifs</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Poplar</subject><subject>Proline</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Selectivity</subject><subject>Servers</subject><subject>Software</subject><subject>Solutes</subject><subject>Structural analysis</subject><subject>transcriptomics</subject><subject>Transportation systems</subject><subject>transporter</subject><subject>Trees</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1rHCEUwIfS0oQ0x96FXnrZxs9xvBTSsG0DKT0kOYujbzYurk7UCeS_j8mGkq0IPp6_98OP13WfCf7GmMJnczCxFoV7LJV61x1TStlKSi7fv4mPutNStriNoU3Sf-yOGO0xl8Nw3MX1QwpL9Sma_Ihuo4NcqonOxw1KEzq_X8ycso_oJptYWljR9WOpsEMtV-8A_TDFBLRenLepoj_JQUDXM1gP5bnaB9h4g2yCvAQwn7oPkwkFTl_Xk-725_rm4vfq6u-vy4vzq5XlYqgrCW5wjgoriRwlNtPQW8JHJsBNUsJIsZ0EjP1gR2atEw1kkyKAxxbxkbOT7nLvdcls9Zz9rl1PJ-P1SyLljTa5ehtAGywUV9IJxgeuHBjMLVMjNYqSiQ-qub7vXfMy7sBZiDWbcCA93In-Tm_Sg5ZMCN6LJvj6KsjpfoFS9c4XC6F9HqSlaMqJ4gQz0Tf0y3_oNi05tqd6oShmhOFGrfaUzamUDNO_wxCsnxtDHzQGewJu2K0V</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Singh, Shweta</creator><creator>Bhatt, Vacha</creator><creator>Kumar, Virender</creator><creator>Kumawat, Surbhi</creator><creator>Khatri, Praveen</creator><creator>Singla, Pankaj</creator><creator>Shivaraj, S.M.</creator><creator>Nadaf, Altaf</creator><creator>Deshmukh, Rupesh</creator><creator>Sharma, Tilak Raj</creator><creator>Sonah, Humira</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6589-3450</orcidid><orcidid>https://orcid.org/0000-0003-4796-6120</orcidid><orcidid>https://orcid.org/0000-0003-4167-6552</orcidid></search><sort><creationdate>20200626</creationdate><title>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</title><author>Singh, Shweta ; Bhatt, Vacha ; Kumar, Virender ; Kumawat, Surbhi ; Khatri, Praveen ; Singla, Pankaj ; Shivaraj, S.M. ; Nadaf, Altaf ; Deshmukh, Rupesh ; Sharma, Tilak Raj ; Sonah, Humira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanine</topic><topic>Aquaporins</topic><topic>Aquilegia</topic><topic>Aquilegia coerulea</topic><topic>Arginine</topic><topic>Asparagine</topic><topic>Bioinformatics</topic><topic>Cell division</topic><topic>Comparative analysis</topic><topic>Evolution</topic><topic>Flowers & plants</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Identification</topic><topic>Localization</topic><topic>Morphology</topic><topic>Nectar</topic><topic>NPA motifs</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Poplar</topic><topic>Proline</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Selectivity</topic><topic>Servers</topic><topic>Software</topic><topic>Solutes</topic><topic>Structural analysis</topic><topic>transcriptomics</topic><topic>Transportation systems</topic><topic>transporter</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Shweta</creatorcontrib><creatorcontrib>Bhatt, Vacha</creatorcontrib><creatorcontrib>Kumar, Virender</creatorcontrib><creatorcontrib>Kumawat, Surbhi</creatorcontrib><creatorcontrib>Khatri, Praveen</creatorcontrib><creatorcontrib>Singla, Pankaj</creatorcontrib><creatorcontrib>Shivaraj, S.M.</creatorcontrib><creatorcontrib>Nadaf, Altaf</creatorcontrib><creatorcontrib>Deshmukh, Rupesh</creatorcontrib><creatorcontrib>Sharma, Tilak Raj</creatorcontrib><creatorcontrib>Sonah, Humira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Shweta</au><au>Bhatt, Vacha</au><au>Kumar, Virender</au><au>Kumawat, Surbhi</au><au>Khatri, Praveen</au><au>Singla, Pankaj</au><au>Shivaraj, S.M.</au><au>Nadaf, Altaf</au><au>Deshmukh, Rupesh</au><au>Sharma, Tilak Raj</au><au>Sonah, Humira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</atitle><jtitle>Plants (Basel)</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>9</volume><issue>6</issue><spage>799</spage><pages>799-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32604788</pmid><doi>10.3390/plants9060799</doi><orcidid>https://orcid.org/0000-0001-6589-3450</orcidid><orcidid>https://orcid.org/0000-0003-4796-6120</orcidid><orcidid>https://orcid.org/0000-0003-4167-6552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2223-7747 |
ispartof | Plants (Basel), 2020-06, Vol.9 (6), p.799 |
issn | 2223-7747 2223-7747 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a059497d534849dea04c39b2a921f489 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | Alanine Aquaporins Aquilegia Aquilegia coerulea Arginine Asparagine Bioinformatics Cell division Comparative analysis Evolution Flowers & plants Gene expression Genomes Identification Localization Morphology Nectar NPA motifs Phylogenetics Phylogeny Physiology Poplar Proline Protein structure Proteins Ribonucleic acid RNA Selectivity Servers Software Solutes Structural analysis transcriptomics Transportation systems transporter Trees |
title | Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Understanding%20of%20Aquaporin%20Transport%20System%20in%20the%20Basal%20Eudicot%20Model%20Species%20Aquilegia%20coerulea&rft.jtitle=Plants%20(Basel)&rft.au=Singh,%20Shweta&rft.date=2020-06-26&rft.volume=9&rft.issue=6&rft.spage=799&rft.pages=799-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants9060799&rft_dat=%3Cproquest_doaj_%3E2419410356%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419203130&rft_id=info:pmid/32604788&rfr_iscdi=true |