Loading…

Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea

Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belongi...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) 2020-06, Vol.9 (6), p.799
Main Authors: Singh, Shweta, Bhatt, Vacha, Kumar, Virender, Kumawat, Surbhi, Khatri, Praveen, Singla, Pankaj, Shivaraj, S.M., Nadaf, Altaf, Deshmukh, Rupesh, Sharma, Tilak Raj, Sonah, Humira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43
cites cdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43
container_end_page
container_issue 6
container_start_page 799
container_title Plants (Basel)
container_volume 9
creator Singh, Shweta
Bhatt, Vacha
Kumar, Virender
Kumawat, Surbhi
Khatri, Praveen
Singla, Pankaj
Shivaraj, S.M.
Nadaf, Altaf
Deshmukh, Rupesh
Sharma, Tilak Raj
Sonah, Humira
description Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.
doi_str_mv 10.3390/plants9060799
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a059497d534849dea04c39b2a921f489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a059497d534849dea04c39b2a921f489</doaj_id><sourcerecordid>2419410356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</originalsourceid><addsrcrecordid>eNpdks1rHCEUwIfS0oQ0x96FXnrZxs9xvBTSsG0DKT0kOYujbzYurk7UCeS_j8mGkq0IPp6_98OP13WfCf7GmMJnczCxFoV7LJV61x1TStlKSi7fv4mPutNStriNoU3Sf-yOGO0xl8Nw3MX1QwpL9Sma_Ihuo4NcqonOxw1KEzq_X8ycso_oJptYWljR9WOpsEMtV-8A_TDFBLRenLepoj_JQUDXM1gP5bnaB9h4g2yCvAQwn7oPkwkFTl_Xk-725_rm4vfq6u-vy4vzq5XlYqgrCW5wjgoriRwlNtPQW8JHJsBNUsJIsZ0EjP1gR2atEw1kkyKAxxbxkbOT7nLvdcls9Zz9rl1PJ-P1SyLljTa5ehtAGywUV9IJxgeuHBjMLVMjNYqSiQ-qub7vXfMy7sBZiDWbcCA93In-Tm_Sg5ZMCN6LJvj6KsjpfoFS9c4XC6F9HqSlaMqJ4gQz0Tf0y3_oNi05tqd6oShmhOFGrfaUzamUDNO_wxCsnxtDHzQGewJu2K0V</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419203130</pqid></control><display><type>article</type><title>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Singh, Shweta ; Bhatt, Vacha ; Kumar, Virender ; Kumawat, Surbhi ; Khatri, Praveen ; Singla, Pankaj ; Shivaraj, S.M. ; Nadaf, Altaf ; Deshmukh, Rupesh ; Sharma, Tilak Raj ; Sonah, Humira</creator><creatorcontrib>Singh, Shweta ; Bhatt, Vacha ; Kumar, Virender ; Kumawat, Surbhi ; Khatri, Praveen ; Singla, Pankaj ; Shivaraj, S.M. ; Nadaf, Altaf ; Deshmukh, Rupesh ; Sharma, Tilak Raj ; Sonah, Humira</creatorcontrib><description>Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.</description><identifier>ISSN: 2223-7747</identifier><identifier>EISSN: 2223-7747</identifier><identifier>DOI: 10.3390/plants9060799</identifier><identifier>PMID: 32604788</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alanine ; Aquaporins ; Aquilegia ; Aquilegia coerulea ; Arginine ; Asparagine ; Bioinformatics ; Cell division ; Comparative analysis ; Evolution ; Flowers &amp; plants ; Gene expression ; Genomes ; Identification ; Localization ; Morphology ; Nectar ; NPA motifs ; Phylogenetics ; Phylogeny ; Physiology ; Poplar ; Proline ; Protein structure ; Proteins ; Ribonucleic acid ; RNA ; Selectivity ; Servers ; Software ; Solutes ; Structural analysis ; transcriptomics ; Transportation systems ; transporter ; Trees</subject><ispartof>Plants (Basel), 2020-06, Vol.9 (6), p.799</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</citedby><cites>FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</cites><orcidid>0000-0001-6589-3450 ; 0000-0003-4796-6120 ; 0000-0003-4167-6552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2419203130/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2419203130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Singh, Shweta</creatorcontrib><creatorcontrib>Bhatt, Vacha</creatorcontrib><creatorcontrib>Kumar, Virender</creatorcontrib><creatorcontrib>Kumawat, Surbhi</creatorcontrib><creatorcontrib>Khatri, Praveen</creatorcontrib><creatorcontrib>Singla, Pankaj</creatorcontrib><creatorcontrib>Shivaraj, S.M.</creatorcontrib><creatorcontrib>Nadaf, Altaf</creatorcontrib><creatorcontrib>Deshmukh, Rupesh</creatorcontrib><creatorcontrib>Sharma, Tilak Raj</creatorcontrib><creatorcontrib>Sonah, Humira</creatorcontrib><title>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</title><title>Plants (Basel)</title><description>Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.</description><subject>Alanine</subject><subject>Aquaporins</subject><subject>Aquilegia</subject><subject>Aquilegia coerulea</subject><subject>Arginine</subject><subject>Asparagine</subject><subject>Bioinformatics</subject><subject>Cell division</subject><subject>Comparative analysis</subject><subject>Evolution</subject><subject>Flowers &amp; plants</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Identification</subject><subject>Localization</subject><subject>Morphology</subject><subject>Nectar</subject><subject>NPA motifs</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Poplar</subject><subject>Proline</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Selectivity</subject><subject>Servers</subject><subject>Software</subject><subject>Solutes</subject><subject>Structural analysis</subject><subject>transcriptomics</subject><subject>Transportation systems</subject><subject>transporter</subject><subject>Trees</subject><issn>2223-7747</issn><issn>2223-7747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1rHCEUwIfS0oQ0x96FXnrZxs9xvBTSsG0DKT0kOYujbzYurk7UCeS_j8mGkq0IPp6_98OP13WfCf7GmMJnczCxFoV7LJV61x1TStlKSi7fv4mPutNStriNoU3Sf-yOGO0xl8Nw3MX1QwpL9Sma_Ihuo4NcqonOxw1KEzq_X8ycso_oJptYWljR9WOpsEMtV-8A_TDFBLRenLepoj_JQUDXM1gP5bnaB9h4g2yCvAQwn7oPkwkFTl_Xk-725_rm4vfq6u-vy4vzq5XlYqgrCW5wjgoriRwlNtPQW8JHJsBNUsJIsZ0EjP1gR2atEw1kkyKAxxbxkbOT7nLvdcls9Zz9rl1PJ-P1SyLljTa5ehtAGywUV9IJxgeuHBjMLVMjNYqSiQ-qub7vXfMy7sBZiDWbcCA93In-Tm_Sg5ZMCN6LJvj6KsjpfoFS9c4XC6F9HqSlaMqJ4gQz0Tf0y3_oNi05tqd6oShmhOFGrfaUzamUDNO_wxCsnxtDHzQGewJu2K0V</recordid><startdate>20200626</startdate><enddate>20200626</enddate><creator>Singh, Shweta</creator><creator>Bhatt, Vacha</creator><creator>Kumar, Virender</creator><creator>Kumawat, Surbhi</creator><creator>Khatri, Praveen</creator><creator>Singla, Pankaj</creator><creator>Shivaraj, S.M.</creator><creator>Nadaf, Altaf</creator><creator>Deshmukh, Rupesh</creator><creator>Sharma, Tilak Raj</creator><creator>Sonah, Humira</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6589-3450</orcidid><orcidid>https://orcid.org/0000-0003-4796-6120</orcidid><orcidid>https://orcid.org/0000-0003-4167-6552</orcidid></search><sort><creationdate>20200626</creationdate><title>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</title><author>Singh, Shweta ; Bhatt, Vacha ; Kumar, Virender ; Kumawat, Surbhi ; Khatri, Praveen ; Singla, Pankaj ; Shivaraj, S.M. ; Nadaf, Altaf ; Deshmukh, Rupesh ; Sharma, Tilak Raj ; Sonah, Humira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alanine</topic><topic>Aquaporins</topic><topic>Aquilegia</topic><topic>Aquilegia coerulea</topic><topic>Arginine</topic><topic>Asparagine</topic><topic>Bioinformatics</topic><topic>Cell division</topic><topic>Comparative analysis</topic><topic>Evolution</topic><topic>Flowers &amp; plants</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Identification</topic><topic>Localization</topic><topic>Morphology</topic><topic>Nectar</topic><topic>NPA motifs</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Poplar</topic><topic>Proline</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Selectivity</topic><topic>Servers</topic><topic>Software</topic><topic>Solutes</topic><topic>Structural analysis</topic><topic>transcriptomics</topic><topic>Transportation systems</topic><topic>transporter</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Shweta</creatorcontrib><creatorcontrib>Bhatt, Vacha</creatorcontrib><creatorcontrib>Kumar, Virender</creatorcontrib><creatorcontrib>Kumawat, Surbhi</creatorcontrib><creatorcontrib>Khatri, Praveen</creatorcontrib><creatorcontrib>Singla, Pankaj</creatorcontrib><creatorcontrib>Shivaraj, S.M.</creatorcontrib><creatorcontrib>Nadaf, Altaf</creatorcontrib><creatorcontrib>Deshmukh, Rupesh</creatorcontrib><creatorcontrib>Sharma, Tilak Raj</creatorcontrib><creatorcontrib>Sonah, Humira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Plants (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Shweta</au><au>Bhatt, Vacha</au><au>Kumar, Virender</au><au>Kumawat, Surbhi</au><au>Khatri, Praveen</au><au>Singla, Pankaj</au><au>Shivaraj, S.M.</au><au>Nadaf, Altaf</au><au>Deshmukh, Rupesh</au><au>Sharma, Tilak Raj</au><au>Sonah, Humira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea</atitle><jtitle>Plants (Basel)</jtitle><date>2020-06-26</date><risdate>2020</risdate><volume>9</volume><issue>6</issue><spage>799</spage><pages>799-</pages><issn>2223-7747</issn><eissn>2223-7747</eissn><abstract>Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32604788</pmid><doi>10.3390/plants9060799</doi><orcidid>https://orcid.org/0000-0001-6589-3450</orcidid><orcidid>https://orcid.org/0000-0003-4796-6120</orcidid><orcidid>https://orcid.org/0000-0003-4167-6552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2223-7747
ispartof Plants (Basel), 2020-06, Vol.9 (6), p.799
issn 2223-7747
2223-7747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a059497d534849dea04c39b2a921f489
source Access via ProQuest (Open Access); PubMed Central
subjects Alanine
Aquaporins
Aquilegia
Aquilegia coerulea
Arginine
Asparagine
Bioinformatics
Cell division
Comparative analysis
Evolution
Flowers & plants
Gene expression
Genomes
Identification
Localization
Morphology
Nectar
NPA motifs
Phylogenetics
Phylogeny
Physiology
Poplar
Proline
Protein structure
Proteins
Ribonucleic acid
RNA
Selectivity
Servers
Software
Solutes
Structural analysis
transcriptomics
Transportation systems
transporter
Trees
title Evolutionary Understanding of Aquaporin Transport System in the Basal Eudicot Model Species Aquilegia coerulea
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Understanding%20of%20Aquaporin%20Transport%20System%20in%20the%20Basal%20Eudicot%20Model%20Species%20Aquilegia%20coerulea&rft.jtitle=Plants%20(Basel)&rft.au=Singh,%20Shweta&rft.date=2020-06-26&rft.volume=9&rft.issue=6&rft.spage=799&rft.pages=799-&rft.issn=2223-7747&rft.eissn=2223-7747&rft_id=info:doi/10.3390/plants9060799&rft_dat=%3Cproquest_doaj_%3E2419410356%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-7ed8dd25c717b70af86c14b35edf77eb20cf5eb68cb3ccd55c73f91e0b5c74b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2419203130&rft_id=info:pmid/32604788&rfr_iscdi=true