Loading…
Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers
Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacryla...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2022-11, Vol.27 (22), p.7808 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393 |
---|---|
cites | cdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393 |
container_end_page | |
container_issue | 22 |
container_start_page | 7808 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 27 |
creator | Maggi, Filippo Manfredi, Amedea Carosio, Federico Maddalena, Lorenza Alongi, Jenny Ferruti, Paolo Ranucci, Elisabetta |
description | Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break. |
doi_str_mv | 10.3390/molecules27227808 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a0ac0a7ad0854795a1e2c23cc8c995b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745964252</galeid><doaj_id>oai_doaj_org_article_a0ac0a7ad0854795a1e2c23cc8c995b5</doaj_id><sourcerecordid>A745964252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</originalsourceid><addsrcrecordid>eNptkl1rFTEQhhdRbK3-AG9kwRtvTp187uZGKId-QUGx9Tpk87Enx-ymJruF8-_NemptVQJJmLzvM5NhquotgmNCBHwcYrB6DjbjBuOmhfZZdYgohhUBKp4_uh9Ur3LeAmBEEXtZHRBOCRIgDquvN3HuN3b0Y19_iWGnBm9i2UZbX-xMir0NuZ42aVHV63ingh2n-jwpNy2W6OrrTUxTfe3D9_rMdzbl19ULp0K2b-7Po-rb2enN-mJ19fn8cn1ytdKMw7QyxLEOm7bUqDhximmDiYbOUSpMa1BHQVuOqNC8Iw5Dp6yhBJjhAA0ighxVl3tuKXgrb5MfVNrJqLz8FYiplypNXgcrFSgNqlEGWkYbwRSyWJdsutVCsI4V1qc963buBmt0-WRS4Qn06cvoN7KPd1JwwQlaAB_uASn-mG2e5OCztiGo0cY5S9xQYMDbZpG-_0u6jXMaS6uKigjKAAj5o-pLy6UfXSx59QKVJw1lglPMcFEd_0dVlrGD13G0zpf4EwPaG3SKOSfrHv6IQC5DJf8ZquJ597g5D47fU0R-Ao0HyWs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739450033</pqid></control><display><type>article</type><title>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Maggi, Filippo ; Manfredi, Amedea ; Carosio, Federico ; Maddalena, Lorenza ; Alongi, Jenny ; Ferruti, Paolo ; Ranucci, Elisabetta</creator><creatorcontrib>Maggi, Filippo ; Manfredi, Amedea ; Carosio, Federico ; Maddalena, Lorenza ; Alongi, Jenny ; Ferruti, Paolo ; Ranucci, Elisabetta</creatorcontrib><description>Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27227808</identifier><identifier>PMID: 36431909</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetic acid ; Acrylamide ; Agmatine ; Amino groups ; Biocompatibility ; Biodegradability ; Biodegradation ; Cell adhesion ; composite hydrogels ; Covalent bonds ; Crosslinking ; Dendrimers ; Elongation ; Fibers ; Fibrous materials ; Hydrogels ; Hydrogels - chemistry ; Lysine ; Materials ; Mechanical properties ; Methods ; Modulus of elasticity ; Morphology ; Physical properties ; polyamidoamine ; Polyamidoamines ; Polyamines - chemistry ; Polymer colloids ; Polymerization ; Polymers ; Production processes ; reinforced hydrogels ; Scanning electron microscopy ; Silk ; Silk - chemistry ; Tissue engineering ; Water</subject><ispartof>Molecules (Basel, Switzerland), 2022-11, Vol.27 (22), p.7808</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</citedby><cites>FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</cites><orcidid>0000-0001-6472-1382 ; 0000-0002-4243-7054 ; 0000-0003-4067-503X ; 0000-0002-1912-5191 ; 0000-0002-5404-440X ; 0000-0002-6402-2650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2739450033/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2739450033?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36431909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maggi, Filippo</creatorcontrib><creatorcontrib>Manfredi, Amedea</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Alongi, Jenny</creatorcontrib><creatorcontrib>Ferruti, Paolo</creatorcontrib><creatorcontrib>Ranucci, Elisabetta</creatorcontrib><title>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.</description><subject>Acetic acid</subject><subject>Acrylamide</subject><subject>Agmatine</subject><subject>Amino groups</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Cell adhesion</subject><subject>composite hydrogels</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>Dendrimers</subject><subject>Elongation</subject><subject>Fibers</subject><subject>Fibrous materials</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Lysine</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Physical properties</subject><subject>polyamidoamine</subject><subject>Polyamidoamines</subject><subject>Polyamines - chemistry</subject><subject>Polymer colloids</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Production processes</subject><subject>reinforced hydrogels</subject><subject>Scanning electron microscopy</subject><subject>Silk</subject><subject>Silk - chemistry</subject><subject>Tissue engineering</subject><subject>Water</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFTEQhhdRbK3-AG9kwRtvTp187uZGKId-QUGx9Tpk87Enx-ymJruF8-_NemptVQJJmLzvM5NhquotgmNCBHwcYrB6DjbjBuOmhfZZdYgohhUBKp4_uh9Ur3LeAmBEEXtZHRBOCRIgDquvN3HuN3b0Y19_iWGnBm9i2UZbX-xMir0NuZ42aVHV63ingh2n-jwpNy2W6OrrTUxTfe3D9_rMdzbl19ULp0K2b-7Po-rb2enN-mJ19fn8cn1ytdKMw7QyxLEOm7bUqDhximmDiYbOUSpMa1BHQVuOqNC8Iw5Dp6yhBJjhAA0ighxVl3tuKXgrb5MfVNrJqLz8FYiplypNXgcrFSgNqlEGWkYbwRSyWJdsutVCsI4V1qc963buBmt0-WRS4Qn06cvoN7KPd1JwwQlaAB_uASn-mG2e5OCztiGo0cY5S9xQYMDbZpG-_0u6jXMaS6uKigjKAAj5o-pLy6UfXSx59QKVJw1lglPMcFEd_0dVlrGD13G0zpf4EwPaG3SKOSfrHv6IQC5DJf8ZquJ597g5D47fU0R-Ao0HyWs</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Maggi, Filippo</creator><creator>Manfredi, Amedea</creator><creator>Carosio, Federico</creator><creator>Maddalena, Lorenza</creator><creator>Alongi, Jenny</creator><creator>Ferruti, Paolo</creator><creator>Ranucci, Elisabetta</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6472-1382</orcidid><orcidid>https://orcid.org/0000-0002-4243-7054</orcidid><orcidid>https://orcid.org/0000-0003-4067-503X</orcidid><orcidid>https://orcid.org/0000-0002-1912-5191</orcidid><orcidid>https://orcid.org/0000-0002-5404-440X</orcidid><orcidid>https://orcid.org/0000-0002-6402-2650</orcidid></search><sort><creationdate>20221101</creationdate><title>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</title><author>Maggi, Filippo ; Manfredi, Amedea ; Carosio, Federico ; Maddalena, Lorenza ; Alongi, Jenny ; Ferruti, Paolo ; Ranucci, Elisabetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Acrylamide</topic><topic>Agmatine</topic><topic>Amino groups</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Cell adhesion</topic><topic>composite hydrogels</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>Dendrimers</topic><topic>Elongation</topic><topic>Fibers</topic><topic>Fibrous materials</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Lysine</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Physical properties</topic><topic>polyamidoamine</topic><topic>Polyamidoamines</topic><topic>Polyamines - chemistry</topic><topic>Polymer colloids</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Production processes</topic><topic>reinforced hydrogels</topic><topic>Scanning electron microscopy</topic><topic>Silk</topic><topic>Silk - chemistry</topic><topic>Tissue engineering</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maggi, Filippo</creatorcontrib><creatorcontrib>Manfredi, Amedea</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Alongi, Jenny</creatorcontrib><creatorcontrib>Ferruti, Paolo</creatorcontrib><creatorcontrib>Ranucci, Elisabetta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maggi, Filippo</au><au>Manfredi, Amedea</au><au>Carosio, Federico</au><au>Maddalena, Lorenza</au><au>Alongi, Jenny</au><au>Ferruti, Paolo</au><au>Ranucci, Elisabetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>27</volume><issue>22</issue><spage>7808</spage><pages>7808-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36431909</pmid><doi>10.3390/molecules27227808</doi><orcidid>https://orcid.org/0000-0001-6472-1382</orcidid><orcidid>https://orcid.org/0000-0002-4243-7054</orcidid><orcidid>https://orcid.org/0000-0003-4067-503X</orcidid><orcidid>https://orcid.org/0000-0002-1912-5191</orcidid><orcidid>https://orcid.org/0000-0002-5404-440X</orcidid><orcidid>https://orcid.org/0000-0002-6402-2650</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2022-11, Vol.27 (22), p.7808 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a0ac0a7ad0854795a1e2c23cc8c995b5 |
source | ProQuest - Publicly Available Content Database; PubMed Central |
subjects | Acetic acid Acrylamide Agmatine Amino groups Biocompatibility Biodegradability Biodegradation Cell adhesion composite hydrogels Covalent bonds Crosslinking Dendrimers Elongation Fibers Fibrous materials Hydrogels Hydrogels - chemistry Lysine Materials Mechanical properties Methods Modulus of elasticity Morphology Physical properties polyamidoamine Polyamidoamines Polyamines - chemistry Polymer colloids Polymerization Polymers Production processes reinforced hydrogels Scanning electron microscopy Silk Silk - chemistry Tissue engineering Water |
title | Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toughening%20Polyamidoamine%20Hydrogels%20through%20Covalent%20Grafting%20of%20Short%20Silk%20Fibers&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Maggi,%20Filippo&rft.date=2022-11-01&rft.volume=27&rft.issue=22&rft.spage=7808&rft.pages=7808-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27227808&rft_dat=%3Cgale_doaj_%3EA745964252%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739450033&rft_id=info:pmid/36431909&rft_galeid=A745964252&rfr_iscdi=true |