Loading…

Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers

Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacryla...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-11, Vol.27 (22), p.7808
Main Authors: Maggi, Filippo, Manfredi, Amedea, Carosio, Federico, Maddalena, Lorenza, Alongi, Jenny, Ferruti, Paolo, Ranucci, Elisabetta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393
cites cdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393
container_end_page
container_issue 22
container_start_page 7808
container_title Molecules (Basel, Switzerland)
container_volume 27
creator Maggi, Filippo
Manfredi, Amedea
Carosio, Federico
Maddalena, Lorenza
Alongi, Jenny
Ferruti, Paolo
Ranucci, Elisabetta
description Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.
doi_str_mv 10.3390/molecules27227808
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a0ac0a7ad0854795a1e2c23cc8c995b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745964252</galeid><doaj_id>oai_doaj_org_article_a0ac0a7ad0854795a1e2c23cc8c995b5</doaj_id><sourcerecordid>A745964252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</originalsourceid><addsrcrecordid>eNptkl1rFTEQhhdRbK3-AG9kwRtvTp187uZGKId-QUGx9Tpk87Enx-ymJruF8-_NemptVQJJmLzvM5NhquotgmNCBHwcYrB6DjbjBuOmhfZZdYgohhUBKp4_uh9Ur3LeAmBEEXtZHRBOCRIgDquvN3HuN3b0Y19_iWGnBm9i2UZbX-xMir0NuZ42aVHV63ingh2n-jwpNy2W6OrrTUxTfe3D9_rMdzbl19ULp0K2b-7Po-rb2enN-mJ19fn8cn1ytdKMw7QyxLEOm7bUqDhximmDiYbOUSpMa1BHQVuOqNC8Iw5Dp6yhBJjhAA0ighxVl3tuKXgrb5MfVNrJqLz8FYiplypNXgcrFSgNqlEGWkYbwRSyWJdsutVCsI4V1qc963buBmt0-WRS4Qn06cvoN7KPd1JwwQlaAB_uASn-mG2e5OCztiGo0cY5S9xQYMDbZpG-_0u6jXMaS6uKigjKAAj5o-pLy6UfXSx59QKVJw1lglPMcFEd_0dVlrGD13G0zpf4EwPaG3SKOSfrHv6IQC5DJf8ZquJ597g5D47fU0R-Ao0HyWs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739450033</pqid></control><display><type>article</type><title>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Maggi, Filippo ; Manfredi, Amedea ; Carosio, Federico ; Maddalena, Lorenza ; Alongi, Jenny ; Ferruti, Paolo ; Ranucci, Elisabetta</creator><creatorcontrib>Maggi, Filippo ; Manfredi, Amedea ; Carosio, Federico ; Maddalena, Lorenza ; Alongi, Jenny ; Ferruti, Paolo ; Ranucci, Elisabetta</creatorcontrib><description>Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27227808</identifier><identifier>PMID: 36431909</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetic acid ; Acrylamide ; Agmatine ; Amino groups ; Biocompatibility ; Biodegradability ; Biodegradation ; Cell adhesion ; composite hydrogels ; Covalent bonds ; Crosslinking ; Dendrimers ; Elongation ; Fibers ; Fibrous materials ; Hydrogels ; Hydrogels - chemistry ; Lysine ; Materials ; Mechanical properties ; Methods ; Modulus of elasticity ; Morphology ; Physical properties ; polyamidoamine ; Polyamidoamines ; Polyamines - chemistry ; Polymer colloids ; Polymerization ; Polymers ; Production processes ; reinforced hydrogels ; Scanning electron microscopy ; Silk ; Silk - chemistry ; Tissue engineering ; Water</subject><ispartof>Molecules (Basel, Switzerland), 2022-11, Vol.27 (22), p.7808</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</citedby><cites>FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</cites><orcidid>0000-0001-6472-1382 ; 0000-0002-4243-7054 ; 0000-0003-4067-503X ; 0000-0002-1912-5191 ; 0000-0002-5404-440X ; 0000-0002-6402-2650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2739450033/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2739450033?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36431909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maggi, Filippo</creatorcontrib><creatorcontrib>Manfredi, Amedea</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Alongi, Jenny</creatorcontrib><creatorcontrib>Ferruti, Paolo</creatorcontrib><creatorcontrib>Ranucci, Elisabetta</creatorcontrib><title>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.</description><subject>Acetic acid</subject><subject>Acrylamide</subject><subject>Agmatine</subject><subject>Amino groups</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Cell adhesion</subject><subject>composite hydrogels</subject><subject>Covalent bonds</subject><subject>Crosslinking</subject><subject>Dendrimers</subject><subject>Elongation</subject><subject>Fibers</subject><subject>Fibrous materials</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Lysine</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Physical properties</subject><subject>polyamidoamine</subject><subject>Polyamidoamines</subject><subject>Polyamines - chemistry</subject><subject>Polymer colloids</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Production processes</subject><subject>reinforced hydrogels</subject><subject>Scanning electron microscopy</subject><subject>Silk</subject><subject>Silk - chemistry</subject><subject>Tissue engineering</subject><subject>Water</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFTEQhhdRbK3-AG9kwRtvTp187uZGKId-QUGx9Tpk87Enx-ymJruF8-_NemptVQJJmLzvM5NhquotgmNCBHwcYrB6DjbjBuOmhfZZdYgohhUBKp4_uh9Ur3LeAmBEEXtZHRBOCRIgDquvN3HuN3b0Y19_iWGnBm9i2UZbX-xMir0NuZ42aVHV63ingh2n-jwpNy2W6OrrTUxTfe3D9_rMdzbl19ULp0K2b-7Po-rb2enN-mJ19fn8cn1ytdKMw7QyxLEOm7bUqDhximmDiYbOUSpMa1BHQVuOqNC8Iw5Dp6yhBJjhAA0ighxVl3tuKXgrb5MfVNrJqLz8FYiplypNXgcrFSgNqlEGWkYbwRSyWJdsutVCsI4V1qc963buBmt0-WRS4Qn06cvoN7KPd1JwwQlaAB_uASn-mG2e5OCztiGo0cY5S9xQYMDbZpG-_0u6jXMaS6uKigjKAAj5o-pLy6UfXSx59QKVJw1lglPMcFEd_0dVlrGD13G0zpf4EwPaG3SKOSfrHv6IQC5DJf8ZquJ597g5D47fU0R-Ao0HyWs</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Maggi, Filippo</creator><creator>Manfredi, Amedea</creator><creator>Carosio, Federico</creator><creator>Maddalena, Lorenza</creator><creator>Alongi, Jenny</creator><creator>Ferruti, Paolo</creator><creator>Ranucci, Elisabetta</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6472-1382</orcidid><orcidid>https://orcid.org/0000-0002-4243-7054</orcidid><orcidid>https://orcid.org/0000-0003-4067-503X</orcidid><orcidid>https://orcid.org/0000-0002-1912-5191</orcidid><orcidid>https://orcid.org/0000-0002-5404-440X</orcidid><orcidid>https://orcid.org/0000-0002-6402-2650</orcidid></search><sort><creationdate>20221101</creationdate><title>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</title><author>Maggi, Filippo ; Manfredi, Amedea ; Carosio, Federico ; Maddalena, Lorenza ; Alongi, Jenny ; Ferruti, Paolo ; Ranucci, Elisabetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetic acid</topic><topic>Acrylamide</topic><topic>Agmatine</topic><topic>Amino groups</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Cell adhesion</topic><topic>composite hydrogels</topic><topic>Covalent bonds</topic><topic>Crosslinking</topic><topic>Dendrimers</topic><topic>Elongation</topic><topic>Fibers</topic><topic>Fibrous materials</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Lysine</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Physical properties</topic><topic>polyamidoamine</topic><topic>Polyamidoamines</topic><topic>Polyamines - chemistry</topic><topic>Polymer colloids</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Production processes</topic><topic>reinforced hydrogels</topic><topic>Scanning electron microscopy</topic><topic>Silk</topic><topic>Silk - chemistry</topic><topic>Tissue engineering</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maggi, Filippo</creatorcontrib><creatorcontrib>Manfredi, Amedea</creatorcontrib><creatorcontrib>Carosio, Federico</creatorcontrib><creatorcontrib>Maddalena, Lorenza</creatorcontrib><creatorcontrib>Alongi, Jenny</creatorcontrib><creatorcontrib>Ferruti, Paolo</creatorcontrib><creatorcontrib>Ranucci, Elisabetta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maggi, Filippo</au><au>Manfredi, Amedea</au><au>Carosio, Federico</au><au>Maddalena, Lorenza</au><au>Alongi, Jenny</au><au>Ferruti, Paolo</au><au>Ranucci, Elisabetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>27</volume><issue>22</issue><spage>7808</spage><pages>7808-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36431909</pmid><doi>10.3390/molecules27227808</doi><orcidid>https://orcid.org/0000-0001-6472-1382</orcidid><orcidid>https://orcid.org/0000-0002-4243-7054</orcidid><orcidid>https://orcid.org/0000-0003-4067-503X</orcidid><orcidid>https://orcid.org/0000-0002-1912-5191</orcidid><orcidid>https://orcid.org/0000-0002-5404-440X</orcidid><orcidid>https://orcid.org/0000-0002-6402-2650</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2022-11, Vol.27 (22), p.7808
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a0ac0a7ad0854795a1e2c23cc8c995b5
source ProQuest - Publicly Available Content Database; PubMed Central
subjects Acetic acid
Acrylamide
Agmatine
Amino groups
Biocompatibility
Biodegradability
Biodegradation
Cell adhesion
composite hydrogels
Covalent bonds
Crosslinking
Dendrimers
Elongation
Fibers
Fibrous materials
Hydrogels
Hydrogels - chemistry
Lysine
Materials
Mechanical properties
Methods
Modulus of elasticity
Morphology
Physical properties
polyamidoamine
Polyamidoamines
Polyamines - chemistry
Polymer colloids
Polymerization
Polymers
Production processes
reinforced hydrogels
Scanning electron microscopy
Silk
Silk - chemistry
Tissue engineering
Water
title Toughening Polyamidoamine Hydrogels through Covalent Grafting of Short Silk Fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toughening%20Polyamidoamine%20Hydrogels%20through%20Covalent%20Grafting%20of%20Short%20Silk%20Fibers&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Maggi,%20Filippo&rft.date=2022-11-01&rft.volume=27&rft.issue=22&rft.spage=7808&rft.pages=7808-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27227808&rft_dat=%3Cgale_doaj_%3EA745964252%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-d3f5b2d8420a63fa5cd23c0bf449d8d1b40ce6149c6b3f20baed4305d60071393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739450033&rft_id=info:pmid/36431909&rft_galeid=A745964252&rfr_iscdi=true