Loading…

Rumex acetosa Y chromosomes: constitutive or facultative heterochromatin?

Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro . 5-azac...

Full description

Saved in:
Bibliographic Details
Published in:Folia histochemica et cytobiologica 2011-08, Vol.43 (3), p.161-167
Main Authors: Andrzej J. Joachimiak, Maria Moś, Janusz Malarz, Paweł Pasierbek, Magdalena Mosiołek
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Condensed Y chromosomes in Rumex acetosa L. root-tip nuclei were studied using 5-azaC treatment and immunohistochemical detection of methylated histones. Although Y chromosomes were decondensed within root meristem in vivo, they became condensed and heteropycnotic in roots cultured in vitro . 5-azacytidine (5-azaC) treatment of cultured roots caused transitional dispersion of their Y chromosome bodies, but 7 days after removal of the drug from the culture medium, Y heterochromatin recondensed and again became visible. The response of Rumex sex chromatin to 5-azaC was compared with that of condensed segments of pericentromeric heterochromatin in Rhoeo spathacea (Sw.) Stearn roots. It was shown that Rhoeo chromocentres, composed of AT-rich constitutive heterochromatin, did not undergo decondensation after 5-azaC treatment. The Y-bodies observed within male nuclei of R. acetosa were globally enriched with H3 histone, demethylated at lysine 4 and methylated at lysine 9. This is the first report of histone tail-modification in condensed sex chromatin in plants. Our results suggest that the interphase condensation of Y chromosomes in Rumex is facultative rather than constitutive. Furthermore, the observed response of Y-bodies to 5-azaC may result indirectly from demethylation and the subsequent altered expression of unknown genes controlling tissue-specific Y-inactivation as opposed to the global demethylation of Y-chromosome DNA.
ISSN:0239-8508
1897-5631
DOI:10.5603/4614