Loading…

M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation

In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the c...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematical physics 2022, Vol.2022, p.1-17
Main Authors: Hai, Rihan, Gegen, Hasi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3
cites cdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3
container_end_page 17
container_issue
container_start_page 1
container_title Advances in mathematical physics
container_volume 2022
creator Hai, Rihan
Gegen, Hasi
description In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution.
doi_str_mv 10.1155/2022/8105654
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a0dc71b16f584b51b93eb43946a17870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a0dc71b16f584b51b93eb43946a17870</doaj_id><sourcerecordid>2675434221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxaMKpCLKrR8gUo-Q4vHf5IiWpaAucID2ao1jp_UqGy920sK3x0sQ4sRcZjzvp2eNXlF8BfIdQIhTSig9rYEIKfin4gBkraoGWLP3NlPyuThKaU1ysUbIRhwU43W1mjbb8i700-jDcFLeuY2PuJuxf7fGwWap76pFGJJPoxvGrE6xdeXyMb9SpsrQlVjehH-uL-kxVOd-MwvZ6af9XS4fphfjL8V-h31yR6_9sPh1sbxfXFar2x9Xi7NV1XLCxophTbGVitG6EwxJ0zEQDixvwAouAA2C7bAGqxQVTnHJCbdESSOZMcKww-Jq9rUB13ob_Qbjkw7o9csixD8a4-jb3mkktlVgQHai5kaAaZgznDVcIqhakez1bfbaxvAwuTTqdb4-X5Y0lUpwximFTJ3MVBtDStF1b78C0buY9C4m_RpTxo9n_K8fLP73H9PPI8qPWw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675434221</pqid></control><display><type>article</type><title>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Hai, Rihan ; Gegen, Hasi</creator><contributor>Konopelchenko, Boris G. ; Boris G Konopelchenko</contributor><creatorcontrib>Hai, Rihan ; Gegen, Hasi ; Konopelchenko, Boris G. ; Boris G Konopelchenko</creatorcontrib><description>In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2022/8105654</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Quantum field theory ; Solitary waves ; Water waves</subject><ispartof>Advances in mathematical physics, 2022, Vol.2022, p.1-17</ispartof><rights>Copyright © 2022 Rihan Hai and Hasi Gegen.</rights><rights>Copyright © 2022 Rihan Hai and Hasi Gegen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</citedby><cites>FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</cites><orcidid>0000-0002-1867-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2675434221/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2675434221?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Konopelchenko, Boris G.</contributor><contributor>Boris G Konopelchenko</contributor><creatorcontrib>Hai, Rihan</creatorcontrib><creatorcontrib>Gegen, Hasi</creatorcontrib><title>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</title><title>Advances in mathematical physics</title><description>In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution.</description><subject>Quantum field theory</subject><subject>Solitary waves</subject><subject>Water waves</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9P3DAQxaMKpCLKrR8gUo-Q4vHf5IiWpaAucID2ao1jp_UqGy920sK3x0sQ4sRcZjzvp2eNXlF8BfIdQIhTSig9rYEIKfin4gBkraoGWLP3NlPyuThKaU1ysUbIRhwU43W1mjbb8i700-jDcFLeuY2PuJuxf7fGwWap76pFGJJPoxvGrE6xdeXyMb9SpsrQlVjehH-uL-kxVOd-MwvZ6af9XS4fphfjL8V-h31yR6_9sPh1sbxfXFar2x9Xi7NV1XLCxophTbGVitG6EwxJ0zEQDixvwAouAA2C7bAGqxQVTnHJCbdESSOZMcKww-Jq9rUB13ob_Qbjkw7o9csixD8a4-jb3mkktlVgQHai5kaAaZgznDVcIqhakez1bfbaxvAwuTTqdb4-X5Y0lUpwximFTJ3MVBtDStF1b78C0buY9C4m_RpTxo9n_K8fLP73H9PPI8qPWw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hai, Rihan</creator><creator>Gegen, Hasi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1867-9512</orcidid></search><sort><creationdate>2022</creationdate><title>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</title><author>Hai, Rihan ; Gegen, Hasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Quantum field theory</topic><topic>Solitary waves</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Rihan</creatorcontrib><creatorcontrib>Gegen, Hasi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Rihan</au><au>Gegen, Hasi</au><au>Konopelchenko, Boris G.</au><au>Boris G Konopelchenko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</atitle><jtitle>Advances in mathematical physics</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/8105654</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1867-9512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9120
ispartof Advances in mathematical physics, 2022, Vol.2022, p.1-17
issn 1687-9120
1687-9139
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a0dc71b16f584b51b93eb43946a17870
source Open Access: Wiley-Blackwell Open Access Journals; ProQuest - Publicly Available Content Database
subjects Quantum field theory
Solitary waves
Water waves
title M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M-Lump%20Solution,%20Semirational%20Solution,%20and%20Self-Consistent%20Source%20Extension%20of%20a%20Novel%202+1-Dimensional%20KdV%20Equation&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Hai,%20Rihan&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2022/8105654&rft_dat=%3Cproquest_doaj_%3E2675434221%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675434221&rft_id=info:pmid/&rfr_iscdi=true