Loading…
M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation
In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the c...
Saved in:
Published in: | Advances in mathematical physics 2022, Vol.2022, p.1-17 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3 |
container_end_page | 17 |
container_issue | |
container_start_page | 1 |
container_title | Advances in mathematical physics |
container_volume | 2022 |
creator | Hai, Rihan Gegen, Hasi |
description | In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution. |
doi_str_mv | 10.1155/2022/8105654 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a0dc71b16f584b51b93eb43946a17870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a0dc71b16f584b51b93eb43946a17870</doaj_id><sourcerecordid>2675434221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxaMKpCLKrR8gUo-Q4vHf5IiWpaAucID2ao1jp_UqGy920sK3x0sQ4sRcZjzvp2eNXlF8BfIdQIhTSig9rYEIKfin4gBkraoGWLP3NlPyuThKaU1ysUbIRhwU43W1mjbb8i700-jDcFLeuY2PuJuxf7fGwWap76pFGJJPoxvGrE6xdeXyMb9SpsrQlVjehH-uL-kxVOd-MwvZ6af9XS4fphfjL8V-h31yR6_9sPh1sbxfXFar2x9Xi7NV1XLCxophTbGVitG6EwxJ0zEQDixvwAouAA2C7bAGqxQVTnHJCbdESSOZMcKww-Jq9rUB13ob_Qbjkw7o9csixD8a4-jb3mkktlVgQHai5kaAaZgznDVcIqhakez1bfbaxvAwuTTqdb4-X5Y0lUpwximFTJ3MVBtDStF1b78C0buY9C4m_RpTxo9n_K8fLP73H9PPI8qPWw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675434221</pqid></control><display><type>article</type><title>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Hai, Rihan ; Gegen, Hasi</creator><contributor>Konopelchenko, Boris G. ; Boris G Konopelchenko</contributor><creatorcontrib>Hai, Rihan ; Gegen, Hasi ; Konopelchenko, Boris G. ; Boris G Konopelchenko</creatorcontrib><description>In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution.</description><identifier>ISSN: 1687-9120</identifier><identifier>EISSN: 1687-9139</identifier><identifier>DOI: 10.1155/2022/8105654</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Quantum field theory ; Solitary waves ; Water waves</subject><ispartof>Advances in mathematical physics, 2022, Vol.2022, p.1-17</ispartof><rights>Copyright © 2022 Rihan Hai and Hasi Gegen.</rights><rights>Copyright © 2022 Rihan Hai and Hasi Gegen. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</citedby><cites>FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</cites><orcidid>0000-0002-1867-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2675434221/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2675434221?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Konopelchenko, Boris G.</contributor><contributor>Boris G Konopelchenko</contributor><creatorcontrib>Hai, Rihan</creatorcontrib><creatorcontrib>Gegen, Hasi</creatorcontrib><title>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</title><title>Advances in mathematical physics</title><description>In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution.</description><subject>Quantum field theory</subject><subject>Solitary waves</subject><subject>Water waves</subject><issn>1687-9120</issn><issn>1687-9139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU9P3DAQxaMKpCLKrR8gUo-Q4vHf5IiWpaAucID2ao1jp_UqGy920sK3x0sQ4sRcZjzvp2eNXlF8BfIdQIhTSig9rYEIKfin4gBkraoGWLP3NlPyuThKaU1ysUbIRhwU43W1mjbb8i700-jDcFLeuY2PuJuxf7fGwWap76pFGJJPoxvGrE6xdeXyMb9SpsrQlVjehH-uL-kxVOd-MwvZ6af9XS4fphfjL8V-h31yR6_9sPh1sbxfXFar2x9Xi7NV1XLCxophTbGVitG6EwxJ0zEQDixvwAouAA2C7bAGqxQVTnHJCbdESSOZMcKww-Jq9rUB13ob_Qbjkw7o9csixD8a4-jb3mkktlVgQHai5kaAaZgznDVcIqhakez1bfbaxvAwuTTqdb4-X5Y0lUpwximFTJ3MVBtDStF1b78C0buY9C4m_RpTxo9n_K8fLP73H9PPI8qPWw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hai, Rihan</creator><creator>Gegen, Hasi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1867-9512</orcidid></search><sort><creationdate>2022</creationdate><title>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</title><author>Hai, Rihan ; Gegen, Hasi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Quantum field theory</topic><topic>Solitary waves</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Rihan</creatorcontrib><creatorcontrib>Gegen, Hasi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Rihan</au><au>Gegen, Hasi</au><au>Konopelchenko, Boris G.</au><au>Boris G Konopelchenko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation</atitle><jtitle>Advances in mathematical physics</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1687-9120</issn><eissn>1687-9139</eissn><abstract>In this paper, we derive the M-lump solution in terms of Matsuno determinant for the combined KP3 and KP4 (cKP3-4) equation by applying the double-sum identities for determinant and investigate the dynamical behaviors of 1- and 2-lump solutions. In addition, we derive the Grammian solution for the cKP3-4 equation and construct the semirational solutions from the Grammian solution. Through the asymptotic analysis, we show that the semirational solutions describe fusion and fission of lumps and line solitons and rogue lump phenomena. Furthermore, we construct the cKP3-4 equation with self-consistent sources via the source generation procedure and present its Grammian and Wronskian solution.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/8105654</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1867-9512</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9120 |
ispartof | Advances in mathematical physics, 2022, Vol.2022, p.1-17 |
issn | 1687-9120 1687-9139 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a0dc71b16f584b51b93eb43946a17870 |
source | Open Access: Wiley-Blackwell Open Access Journals; ProQuest - Publicly Available Content Database |
subjects | Quantum field theory Solitary waves Water waves |
title | M-Lump Solution, Semirational Solution, and Self-Consistent Source Extension of a Novel 2+1-Dimensional KdV Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M-Lump%20Solution,%20Semirational%20Solution,%20and%20Self-Consistent%20Source%20Extension%20of%20a%20Novel%202+1-Dimensional%20KdV%20Equation&rft.jtitle=Advances%20in%20mathematical%20physics&rft.au=Hai,%20Rihan&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1687-9120&rft.eissn=1687-9139&rft_id=info:doi/10.1155/2022/8105654&rft_dat=%3Cproquest_doaj_%3E2675434221%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-3a82ac67328f53a09f315e1d491d5451aba1dfa81d7725e746404d076b63bb5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675434221&rft_id=info:pmid/&rfr_iscdi=true |