Loading…

Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation

Nowadays a unit quaternion is widely employed to represent the three-dimensional (3D) rotation matrix and then applied to the 3D similarity coordinate transformation. A unit dual quaternion can describe not only the 3D rotation matrix but also the translation vector meanwhile. Thus it is of great po...

Full description

Saved in:
Bibliographic Details
Published in:Earth, planets, and space planets, and space, 2024-01, Vol.76 (1), p.20-19, Article 20
Main Authors: Zeng, Huaien, Wang, Zhihao, Li, Junfeng, Li, Siyang, Wang, Junjie, Li, Xi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c380t-bca5f90a06890b5f283e24965c0c14a9ad6b7d637da76963ca5967446e86f3683
container_end_page 19
container_issue 1
container_start_page 20
container_title Earth, planets, and space
container_volume 76
creator Zeng, Huaien
Wang, Zhihao
Li, Junfeng
Li, Siyang
Wang, Junjie
Li, Xi
description Nowadays a unit quaternion is widely employed to represent the three-dimensional (3D) rotation matrix and then applied to the 3D similarity coordinate transformation. A unit dual quaternion can describe not only the 3D rotation matrix but also the translation vector meanwhile. Thus it is of great potentiality to the 3D coordinate transformation. The paper constructs the 3D similarity coordinate transformation model based on the unit dual quaternion in the sense of errors-in-variables (EIV). By means of linearization by Taylor's formula, Lagrangian extremum principle with constraints, and iterative numerical technique, the Dual Quaternion Algorithm (DQA) of 3D coordinate transformation in weighted total least squares (WTLS) is proposed. The algorithm is capable to not only compute the transformation parameters but also estimate the full precision information of computed parameters. Two numerical experiments involving an actual geodetic datum transformation case and a simulated case from surface fitting are demonstrated. The results indicate that DQA is not sensitive to the initial values of parameters, and obtains the consistent values of transformation parameters with the quaternion algorithm (QA), regardless of the size of the rotation angles and no matter whether the relative errors of coordinates (pseudo-observations) are small or large. Moreover, the DQA is advantageous to the QA. The key advantage is the improvement of estimated precisions of transformation parameters, i.e. the average decrease percent of standard deviations is 18.28%, and biggest decrease percent is 99.36% for the scaled quaternion and translations in the geodetic datum transformation case. Another advantage is the DQA implements the computation and precision estimation of traditional seven transformation parameters (which still are frequent used yet) from dual quaternion, and even could perform the computation and precision estimation of the scaled quaternion. Graphical Abstract
doi_str_mv 10.1186/s40623-024-01967-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a0e0e4fd67f948c1b44321fcf6129210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a0e0e4fd67f948c1b44321fcf6129210</doaj_id><sourcerecordid>2921015286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bca5f90a06890b5f283e24965c0c14a9ad6b7d637da76963ca5967446e86f3683</originalsourceid><addsrcrecordid>eNp9kc1qGzEUhYeSQh2nL5DVQNdKr35GIy2Lm7SGQDbpriDuaCRbZjyypXEhefoontJmlYXQD-f7xOVU1TWFG0qV_JoFSMYJMEGAatmS5w_VgioFpNGKXrw5f6ouc94BcBCSL6rf3084kOMJJ5fGEEfSYXZ9HcoVp_DH1ThsYgrTdl9HX09bV1Zyru7D3o25ADjUNsbUh7Eo6inhmH1M-wLH8ar66HHI7vPffVn9urt9XP0k9w8_1qtv98RyBRPpLDZeA4JUGrrGM8UdE1o2FiwVqLGXXdtL3vbYSi15iZcRhZBOSc-l4stqPXv7iDtzSGGP6clEDOb8ENPGYJqCHZxBcOCE72XrtVCWdkJwRr31kjLNKBTXl9l1SPF4cnkyu3hKZcxszgHaMCVLis0pm2LOyfl_v1Iwr42YuRFTGjHnRsxzgfgM5RIeNy79V79DvQBaBI-h</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921015286</pqid></control><display><type>article</type><title>Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Zeng, Huaien ; Wang, Zhihao ; Li, Junfeng ; Li, Siyang ; Wang, Junjie ; Li, Xi</creator><creatorcontrib>Zeng, Huaien ; Wang, Zhihao ; Li, Junfeng ; Li, Siyang ; Wang, Junjie ; Li, Xi</creatorcontrib><description>Nowadays a unit quaternion is widely employed to represent the three-dimensional (3D) rotation matrix and then applied to the 3D similarity coordinate transformation. A unit dual quaternion can describe not only the 3D rotation matrix but also the translation vector meanwhile. Thus it is of great potentiality to the 3D coordinate transformation. The paper constructs the 3D similarity coordinate transformation model based on the unit dual quaternion in the sense of errors-in-variables (EIV). By means of linearization by Taylor's formula, Lagrangian extremum principle with constraints, and iterative numerical technique, the Dual Quaternion Algorithm (DQA) of 3D coordinate transformation in weighted total least squares (WTLS) is proposed. The algorithm is capable to not only compute the transformation parameters but also estimate the full precision information of computed parameters. Two numerical experiments involving an actual geodetic datum transformation case and a simulated case from surface fitting are demonstrated. The results indicate that DQA is not sensitive to the initial values of parameters, and obtains the consistent values of transformation parameters with the quaternion algorithm (QA), regardless of the size of the rotation angles and no matter whether the relative errors of coordinates (pseudo-observations) are small or large. Moreover, the DQA is advantageous to the QA. The key advantage is the improvement of estimated precisions of transformation parameters, i.e. the average decrease percent of standard deviations is 18.28%, and biggest decrease percent is 99.36% for the scaled quaternion and translations in the geodetic datum transformation case. Another advantage is the DQA implements the computation and precision estimation of traditional seven transformation parameters (which still are frequent used yet) from dual quaternion, and even could perform the computation and precision estimation of the scaled quaternion. Graphical Abstract</description><identifier>ISSN: 1880-5981</identifier><identifier>EISSN: 1880-5981</identifier><identifier>DOI: 10.1186/s40623-024-01967-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3D similarity coordinate transformation ; 6. Geodesy ; Algorithms ; Computation ; Coordinate transformations ; Datum (elevation) ; Dual quaternion ; Dual quaternion algorithm (DQA) ; Earth and Environmental Science ; Earth Sciences ; Errors ; Geology ; Geophysics/Geodesy ; Iterative algorithms ; Iterative methods ; Numerical experiments ; Parameter sensitivity ; Quaternion ; Quaternions ; Rotation ; Similarity ; Translations ; Weighted total least squares (WTLS)</subject><ispartof>Earth, planets, and space, 2024-01, Vol.76 (1), p.20-19, Article 20</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-bca5f90a06890b5f283e24965c0c14a9ad6b7d637da76963ca5967446e86f3683</cites><orcidid>0000-0002-0040-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2921015286/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2921015286?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Zeng, Huaien</creatorcontrib><creatorcontrib>Wang, Zhihao</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><title>Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation</title><title>Earth, planets, and space</title><addtitle>Earth Planets Space</addtitle><description>Nowadays a unit quaternion is widely employed to represent the three-dimensional (3D) rotation matrix and then applied to the 3D similarity coordinate transformation. A unit dual quaternion can describe not only the 3D rotation matrix but also the translation vector meanwhile. Thus it is of great potentiality to the 3D coordinate transformation. The paper constructs the 3D similarity coordinate transformation model based on the unit dual quaternion in the sense of errors-in-variables (EIV). By means of linearization by Taylor's formula, Lagrangian extremum principle with constraints, and iterative numerical technique, the Dual Quaternion Algorithm (DQA) of 3D coordinate transformation in weighted total least squares (WTLS) is proposed. The algorithm is capable to not only compute the transformation parameters but also estimate the full precision information of computed parameters. Two numerical experiments involving an actual geodetic datum transformation case and a simulated case from surface fitting are demonstrated. The results indicate that DQA is not sensitive to the initial values of parameters, and obtains the consistent values of transformation parameters with the quaternion algorithm (QA), regardless of the size of the rotation angles and no matter whether the relative errors of coordinates (pseudo-observations) are small or large. Moreover, the DQA is advantageous to the QA. The key advantage is the improvement of estimated precisions of transformation parameters, i.e. the average decrease percent of standard deviations is 18.28%, and biggest decrease percent is 99.36% for the scaled quaternion and translations in the geodetic datum transformation case. Another advantage is the DQA implements the computation and precision estimation of traditional seven transformation parameters (which still are frequent used yet) from dual quaternion, and even could perform the computation and precision estimation of the scaled quaternion. Graphical Abstract</description><subject>3D similarity coordinate transformation</subject><subject>6. Geodesy</subject><subject>Algorithms</subject><subject>Computation</subject><subject>Coordinate transformations</subject><subject>Datum (elevation)</subject><subject>Dual quaternion</subject><subject>Dual quaternion algorithm (DQA)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Errors</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Numerical experiments</subject><subject>Parameter sensitivity</subject><subject>Quaternion</subject><subject>Quaternions</subject><subject>Rotation</subject><subject>Similarity</subject><subject>Translations</subject><subject>Weighted total least squares (WTLS)</subject><issn>1880-5981</issn><issn>1880-5981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1qGzEUhYeSQh2nL5DVQNdKr35GIy2Lm7SGQDbpriDuaCRbZjyypXEhefoontJmlYXQD-f7xOVU1TWFG0qV_JoFSMYJMEGAatmS5w_VgioFpNGKXrw5f6ouc94BcBCSL6rf3084kOMJJ5fGEEfSYXZ9HcoVp_DH1ThsYgrTdl9HX09bV1Zyru7D3o25ADjUNsbUh7Eo6inhmH1M-wLH8ar66HHI7vPffVn9urt9XP0k9w8_1qtv98RyBRPpLDZeA4JUGrrGM8UdE1o2FiwVqLGXXdtL3vbYSi15iZcRhZBOSc-l4stqPXv7iDtzSGGP6clEDOb8ENPGYJqCHZxBcOCE72XrtVCWdkJwRr31kjLNKBTXl9l1SPF4cnkyu3hKZcxszgHaMCVLis0pm2LOyfl_v1Iwr42YuRFTGjHnRsxzgfgM5RIeNy79V79DvQBaBI-h</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Zeng, Huaien</creator><creator>Wang, Zhihao</creator><creator>Li, Junfeng</creator><creator>Li, Siyang</creator><creator>Wang, Junjie</creator><creator>Li, Xi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0040-5417</orcidid></search><sort><creationdate>20240129</creationdate><title>Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation</title><author>Zeng, Huaien ; Wang, Zhihao ; Li, Junfeng ; Li, Siyang ; Wang, Junjie ; Li, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bca5f90a06890b5f283e24965c0c14a9ad6b7d637da76963ca5967446e86f3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D similarity coordinate transformation</topic><topic>6. Geodesy</topic><topic>Algorithms</topic><topic>Computation</topic><topic>Coordinate transformations</topic><topic>Datum (elevation)</topic><topic>Dual quaternion</topic><topic>Dual quaternion algorithm (DQA)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Errors</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Numerical experiments</topic><topic>Parameter sensitivity</topic><topic>Quaternion</topic><topic>Quaternions</topic><topic>Rotation</topic><topic>Similarity</topic><topic>Translations</topic><topic>Weighted total least squares (WTLS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Huaien</creatorcontrib><creatorcontrib>Wang, Zhihao</creatorcontrib><creatorcontrib>Li, Junfeng</creatorcontrib><creatorcontrib>Li, Siyang</creatorcontrib><creatorcontrib>Wang, Junjie</creatorcontrib><creatorcontrib>Li, Xi</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth, planets, and space</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Huaien</au><au>Wang, Zhihao</au><au>Li, Junfeng</au><au>Li, Siyang</au><au>Wang, Junjie</au><au>Li, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation</atitle><jtitle>Earth, planets, and space</jtitle><stitle>Earth Planets Space</stitle><date>2024-01-29</date><risdate>2024</risdate><volume>76</volume><issue>1</issue><spage>20</spage><epage>19</epage><pages>20-19</pages><artnum>20</artnum><issn>1880-5981</issn><eissn>1880-5981</eissn><abstract>Nowadays a unit quaternion is widely employed to represent the three-dimensional (3D) rotation matrix and then applied to the 3D similarity coordinate transformation. A unit dual quaternion can describe not only the 3D rotation matrix but also the translation vector meanwhile. Thus it is of great potentiality to the 3D coordinate transformation. The paper constructs the 3D similarity coordinate transformation model based on the unit dual quaternion in the sense of errors-in-variables (EIV). By means of linearization by Taylor's formula, Lagrangian extremum principle with constraints, and iterative numerical technique, the Dual Quaternion Algorithm (DQA) of 3D coordinate transformation in weighted total least squares (WTLS) is proposed. The algorithm is capable to not only compute the transformation parameters but also estimate the full precision information of computed parameters. Two numerical experiments involving an actual geodetic datum transformation case and a simulated case from surface fitting are demonstrated. The results indicate that DQA is not sensitive to the initial values of parameters, and obtains the consistent values of transformation parameters with the quaternion algorithm (QA), regardless of the size of the rotation angles and no matter whether the relative errors of coordinates (pseudo-observations) are small or large. Moreover, the DQA is advantageous to the QA. The key advantage is the improvement of estimated precisions of transformation parameters, i.e. the average decrease percent of standard deviations is 18.28%, and biggest decrease percent is 99.36% for the scaled quaternion and translations in the geodetic datum transformation case. Another advantage is the DQA implements the computation and precision estimation of traditional seven transformation parameters (which still are frequent used yet) from dual quaternion, and even could perform the computation and precision estimation of the scaled quaternion. Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1186/s40623-024-01967-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0040-5417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1880-5981
ispartof Earth, planets, and space, 2024-01, Vol.76 (1), p.20-19, Article 20
issn 1880-5981
1880-5981
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a0e0e4fd67f948c1b44321fcf6129210
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects 3D similarity coordinate transformation
6. Geodesy
Algorithms
Computation
Coordinate transformations
Datum (elevation)
Dual quaternion
Dual quaternion algorithm (DQA)
Earth and Environmental Science
Earth Sciences
Errors
Geology
Geophysics/Geodesy
Iterative algorithms
Iterative methods
Numerical experiments
Parameter sensitivity
Quaternion
Quaternions
Rotation
Similarity
Translations
Weighted total least squares (WTLS)
title Dual-quaternion-based iterative algorithm of the three dimensional coordinate transformation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T18%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-quaternion-based%20iterative%20algorithm%20of%20the%20three%20dimensional%20coordinate%20transformation&rft.jtitle=Earth,%20planets,%20and%20space&rft.au=Zeng,%20Huaien&rft.date=2024-01-29&rft.volume=76&rft.issue=1&rft.spage=20&rft.epage=19&rft.pages=20-19&rft.artnum=20&rft.issn=1880-5981&rft.eissn=1880-5981&rft_id=info:doi/10.1186/s40623-024-01967-z&rft_dat=%3Cproquest_doaj_%3E2921015286%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-bca5f90a06890b5f283e24965c0c14a9ad6b7d637da76963ca5967446e86f3683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921015286&rft_id=info:pmid/&rfr_iscdi=true