Loading…
Exploring Pt-Pd Alloy Nanoparticle Cluster Formation through Conventional Sizing Techniques and Single-Particle Inductively Coupled Plasma—Sector Field Mass Spectrometry
Accurate characterization of Pt-Pd alloy nanoparticle clusters (NCs) is crucial for understanding their synthesis using Gas-Diffusion Electrocrystallization (GDEx). In this study, we propose a comprehensive approach that integrates conventional sizing techniques—scanning electron microscopy (SEM) an...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-09, Vol.13 (18), p.2610 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate characterization of Pt-Pd alloy nanoparticle clusters (NCs) is crucial for understanding their synthesis using Gas-Diffusion Electrocrystallization (GDEx). In this study, we propose a comprehensive approach that integrates conventional sizing techniques—scanning electron microscopy (SEM) and dynamic light scattering (DLS)—with innovative single-particle inductively coupled plasma—sector field mass spectrometry (spICP-SFMS) to investigate Pt-Pd alloy NC formation. SEM and DLS provide insights into morphology and hydrodynamic sizes, while spICP-SFMS elucidates the particle size and distribution of Pt-Pd alloy NCs, offering rapid and orthogonal characterization. The spICP-SFMS approach presented enables detailed characterization of Pt-Pd alloy NCs, which was previously challenging due to the absence of multi-element capabilities in conventional spICP-MS systems. This innovative approach not only enhances our understanding of bimetallic nanoparticle synthesis, but also paves the way for tailoring these materials for specific applications, marking a significant advancement in the field of nanomaterial science. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano13182610 |