Loading…
Digital Soil Mapping of Cadmium: Identifying Arable Land for Producing Winter Wheat with Low Concentrations of Cadmium
Intake of cadmium (Cd) via vegetable food poses a possible health risk. Cereals are one of the major sources of Cd, and the Cd concentration in the soil has a great effect on the levels in the grain. The aim of the study was to produce decision support for identification of areas suitable for low-Cd...
Saved in:
Published in: | Agronomy (Basel) 2023, Vol.13 (2), p.317 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c457t-764e73327cf2803c01fd8c6e52230f8a40f2b06d4a686a83f565332c224b4c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c457t-764e73327cf2803c01fd8c6e52230f8a40f2b06d4a686a83f565332c224b4c3 |
container_end_page | |
container_issue | 2 |
container_start_page | 317 |
container_title | Agronomy (Basel) |
container_volume | 13 |
creator | Adler, Karl Persson, Kristin Söderström, Mats Eriksson, Jan Pettersson, Carl-Göran |
description | Intake of cadmium (Cd) via vegetable food poses a possible health risk. Cereals are one of the major sources of Cd, and the Cd concentration in the soil has a great effect on the levels in the grain. The aim of the study was to produce decision support for identification of areas suitable for low-Cd winter wheat production in the form of a detailed digital soil map covering an important agricultural region in southern Sweden. A two-step approach was used: (1) we increased the number of soil Cd observations by combining two sets of soil samples, one with laboratory Cd analyses (304 samples) and one with predicted Cd from a portable x-ray fluorescent (PXRF) sensor (2097 samples); and (2) a digital soil mapping (DSM) model (gradient boosting regression) was calibrated on all 2401 soil samples to create a soil Cd concentration map using a number of covariates, of which airborne gamma ray data was identified as the most important. In the first step, cross-validation of the PXRF model obtained a model efficiency (E) of 0.82 and mean absolute error (MAE) of 0.08 mg kg−1. The DSM model had an E of 0.69 and MAE of 0.11 mg kg−1. The map of predicted soil Cd concentrations were compared against 307 winter wheat (Triticum aestivum L.) grain samples with laboratory-analyzed Cd concentrations. Areas in the map with low soil Cd concentrations had a high frequency of lower grain Cd concentrations. The map thus seemed to have potential for finding areas suitable for production of low-Cd winter wheat; e.g., for baby food. |
doi_str_mv | 10.3390/agronomy13020317 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a1227f8c9340430ab0e15c7832ecfffd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742993606</galeid><doaj_id>oai_doaj_org_article_a1227f8c9340430ab0e15c7832ecfffd</doaj_id><sourcerecordid>A742993606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-764e73327cf2803c01fd8c6e52230f8a40f2b06d4a686a83f565332c224b4c3</originalsourceid><addsrcrecordid>eNpdkk2P0zAQhiMEEqtl7xwtce4y_oidcKsKLJWKQFqkPVoTx866SuxiJ1T997gUwYLnMKPXfh_NWFNVryncct7CWxxSDHE6UQ4MOFXPqisGiq8Eb-vnT-qX1U3OeyinpbwBdVX9eO8HP-NI7qMfyWc8HHwYSHRkg_3kl-kd2fY2zN6dzvo6YTdassPQExcT-Zpiv5jzzYMPs03k4dHiTI5-fiS7eCSbGExxJ5x9DPkJ9lX1wuGY7c3vfF3df_zwbfNptftyt92sdysjajWvlBRWcc6UcawBboC6vjHS1oxxcA0KcKwD2QuUjcSGu1rW5blhTHTC8Otqe6H2Eff6kPyE6aQjev1LiGnQmGZvRquRMqZcY1ouQHDADiytjWo4s8Y51xfW7YWVj_awdP_Q8rh0mM5JZ6spoxKaYnhzMRxS_L7YPOt9XFIo02qmVFuDkJz-xQ5YuvDBxfJbpkRvJ29isM4Xfa0Ea1suQRYDXAwmxZyTdX86oaDPy6D_Xwb-E8p8qOU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779504631</pqid></control><display><type>article</type><title>Digital Soil Mapping of Cadmium: Identifying Arable Land for Producing Winter Wheat with Low Concentrations of Cadmium</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Adler, Karl ; Persson, Kristin ; Söderström, Mats ; Eriksson, Jan ; Pettersson, Carl-Göran</creator><creatorcontrib>Adler, Karl ; Persson, Kristin ; Söderström, Mats ; Eriksson, Jan ; Pettersson, Carl-Göran ; Sveriges lantbruksuniversitet</creatorcontrib><description>Intake of cadmium (Cd) via vegetable food poses a possible health risk. Cereals are one of the major sources of Cd, and the Cd concentration in the soil has a great effect on the levels in the grain. The aim of the study was to produce decision support for identification of areas suitable for low-Cd winter wheat production in the form of a detailed digital soil map covering an important agricultural region in southern Sweden. A two-step approach was used: (1) we increased the number of soil Cd observations by combining two sets of soil samples, one with laboratory Cd analyses (304 samples) and one with predicted Cd from a portable x-ray fluorescent (PXRF) sensor (2097 samples); and (2) a digital soil mapping (DSM) model (gradient boosting regression) was calibrated on all 2401 soil samples to create a soil Cd concentration map using a number of covariates, of which airborne gamma ray data was identified as the most important. In the first step, cross-validation of the PXRF model obtained a model efficiency (E) of 0.82 and mean absolute error (MAE) of 0.08 mg kg−1. The DSM model had an E of 0.69 and MAE of 0.11 mg kg−1. The map of predicted soil Cd concentrations were compared against 307 winter wheat (Triticum aestivum L.) grain samples with laboratory-analyzed Cd concentrations. Areas in the map with low soil Cd concentrations had a high frequency of lower grain Cd concentrations. The map thus seemed to have potential for finding areas suitable for production of low-Cd winter wheat; e.g., for baby food.</description><identifier>ISSN: 2073-4395</identifier><identifier>EISSN: 2073-4395</identifier><identifier>DOI: 10.3390/agronomy13020317</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural land ; Agricultural Science ; Agriculture ; Arable land ; Baby foods ; Cadmium ; Calibration ; Cereals ; Clay ; Crop production ; Datasets ; Digital mapping ; digital soil mapping ; Fluorescence ; Food ; Fysisk geografi ; Gamma rays ; Grain ; Health risks ; Jordbruksvetenskap ; Laboratories ; Low concentrations ; Machine learning ; Mapping ; Markvetenskap ; Physical Geography ; PXRF ; Regression models ; Soil mapping ; Soil maps ; Soil Science ; Soils ; Triticum aestivum ; Wheat ; Winter wheat</subject><ispartof>Agronomy (Basel), 2023, Vol.13 (2), p.317</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-764e73327cf2803c01fd8c6e52230f8a40f2b06d4a686a83f565332c224b4c3</citedby><cites>FETCH-LOGICAL-c457t-764e73327cf2803c01fd8c6e52230f8a40f2b06d4a686a83f565332c224b4c3</cites><orcidid>0000-0002-8428-8851 ; 0000-0001-9946-0979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779504631/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779504631?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/121608$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Adler, Karl</creatorcontrib><creatorcontrib>Persson, Kristin</creatorcontrib><creatorcontrib>Söderström, Mats</creatorcontrib><creatorcontrib>Eriksson, Jan</creatorcontrib><creatorcontrib>Pettersson, Carl-Göran</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Digital Soil Mapping of Cadmium: Identifying Arable Land for Producing Winter Wheat with Low Concentrations of Cadmium</title><title>Agronomy (Basel)</title><description>Intake of cadmium (Cd) via vegetable food poses a possible health risk. Cereals are one of the major sources of Cd, and the Cd concentration in the soil has a great effect on the levels in the grain. The aim of the study was to produce decision support for identification of areas suitable for low-Cd winter wheat production in the form of a detailed digital soil map covering an important agricultural region in southern Sweden. A two-step approach was used: (1) we increased the number of soil Cd observations by combining two sets of soil samples, one with laboratory Cd analyses (304 samples) and one with predicted Cd from a portable x-ray fluorescent (PXRF) sensor (2097 samples); and (2) a digital soil mapping (DSM) model (gradient boosting regression) was calibrated on all 2401 soil samples to create a soil Cd concentration map using a number of covariates, of which airborne gamma ray data was identified as the most important. In the first step, cross-validation of the PXRF model obtained a model efficiency (E) of 0.82 and mean absolute error (MAE) of 0.08 mg kg−1. The DSM model had an E of 0.69 and MAE of 0.11 mg kg−1. The map of predicted soil Cd concentrations were compared against 307 winter wheat (Triticum aestivum L.) grain samples with laboratory-analyzed Cd concentrations. Areas in the map with low soil Cd concentrations had a high frequency of lower grain Cd concentrations. The map thus seemed to have potential for finding areas suitable for production of low-Cd winter wheat; e.g., for baby food.</description><subject>Agricultural land</subject><subject>Agricultural Science</subject><subject>Agriculture</subject><subject>Arable land</subject><subject>Baby foods</subject><subject>Cadmium</subject><subject>Calibration</subject><subject>Cereals</subject><subject>Clay</subject><subject>Crop production</subject><subject>Datasets</subject><subject>Digital mapping</subject><subject>digital soil mapping</subject><subject>Fluorescence</subject><subject>Food</subject><subject>Fysisk geografi</subject><subject>Gamma rays</subject><subject>Grain</subject><subject>Health risks</subject><subject>Jordbruksvetenskap</subject><subject>Laboratories</subject><subject>Low concentrations</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Markvetenskap</subject><subject>Physical Geography</subject><subject>PXRF</subject><subject>Regression models</subject><subject>Soil mapping</subject><subject>Soil maps</subject><subject>Soil Science</subject><subject>Soils</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><subject>Winter wheat</subject><issn>2073-4395</issn><issn>2073-4395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk2P0zAQhiMEEqtl7xwtce4y_oidcKsKLJWKQFqkPVoTx866SuxiJ1T997gUwYLnMKPXfh_NWFNVryncct7CWxxSDHE6UQ4MOFXPqisGiq8Eb-vnT-qX1U3OeyinpbwBdVX9eO8HP-NI7qMfyWc8HHwYSHRkg_3kl-kd2fY2zN6dzvo6YTdassPQExcT-Zpiv5jzzYMPs03k4dHiTI5-fiS7eCSbGExxJ5x9DPkJ9lX1wuGY7c3vfF3df_zwbfNptftyt92sdysjajWvlBRWcc6UcawBboC6vjHS1oxxcA0KcKwD2QuUjcSGu1rW5blhTHTC8Otqe6H2Eff6kPyE6aQjev1LiGnQmGZvRquRMqZcY1ouQHDADiytjWo4s8Y51xfW7YWVj_awdP_Q8rh0mM5JZ6spoxKaYnhzMRxS_L7YPOt9XFIo02qmVFuDkJz-xQ5YuvDBxfJbpkRvJ29isM4Xfa0Ea1suQRYDXAwmxZyTdX86oaDPy6D_Xwb-E8p8qOU</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Adler, Karl</creator><creator>Persson, Kristin</creator><creator>Söderström, Mats</creator><creator>Eriksson, Jan</creator><creator>Pettersson, Carl-Göran</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8428-8851</orcidid><orcidid>https://orcid.org/0000-0001-9946-0979</orcidid></search><sort><creationdate>2023</creationdate><title>Digital Soil Mapping of Cadmium: Identifying Arable Land for Producing Winter Wheat with Low Concentrations of Cadmium</title><author>Adler, Karl ; Persson, Kristin ; Söderström, Mats ; Eriksson, Jan ; Pettersson, Carl-Göran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-764e73327cf2803c01fd8c6e52230f8a40f2b06d4a686a83f565332c224b4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural land</topic><topic>Agricultural Science</topic><topic>Agriculture</topic><topic>Arable land</topic><topic>Baby foods</topic><topic>Cadmium</topic><topic>Calibration</topic><topic>Cereals</topic><topic>Clay</topic><topic>Crop production</topic><topic>Datasets</topic><topic>Digital mapping</topic><topic>digital soil mapping</topic><topic>Fluorescence</topic><topic>Food</topic><topic>Fysisk geografi</topic><topic>Gamma rays</topic><topic>Grain</topic><topic>Health risks</topic><topic>Jordbruksvetenskap</topic><topic>Laboratories</topic><topic>Low concentrations</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Markvetenskap</topic><topic>Physical Geography</topic><topic>PXRF</topic><topic>Regression models</topic><topic>Soil mapping</topic><topic>Soil maps</topic><topic>Soil Science</topic><topic>Soils</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adler, Karl</creatorcontrib><creatorcontrib>Persson, Kristin</creatorcontrib><creatorcontrib>Söderström, Mats</creatorcontrib><creatorcontrib>Eriksson, Jan</creatorcontrib><creatorcontrib>Pettersson, Carl-Göran</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agronomy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, Karl</au><au>Persson, Kristin</au><au>Söderström, Mats</au><au>Eriksson, Jan</au><au>Pettersson, Carl-Göran</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Soil Mapping of Cadmium: Identifying Arable Land for Producing Winter Wheat with Low Concentrations of Cadmium</atitle><jtitle>Agronomy (Basel)</jtitle><date>2023</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>317</spage><pages>317-</pages><issn>2073-4395</issn><eissn>2073-4395</eissn><abstract>Intake of cadmium (Cd) via vegetable food poses a possible health risk. Cereals are one of the major sources of Cd, and the Cd concentration in the soil has a great effect on the levels in the grain. The aim of the study was to produce decision support for identification of areas suitable for low-Cd winter wheat production in the form of a detailed digital soil map covering an important agricultural region in southern Sweden. A two-step approach was used: (1) we increased the number of soil Cd observations by combining two sets of soil samples, one with laboratory Cd analyses (304 samples) and one with predicted Cd from a portable x-ray fluorescent (PXRF) sensor (2097 samples); and (2) a digital soil mapping (DSM) model (gradient boosting regression) was calibrated on all 2401 soil samples to create a soil Cd concentration map using a number of covariates, of which airborne gamma ray data was identified as the most important. In the first step, cross-validation of the PXRF model obtained a model efficiency (E) of 0.82 and mean absolute error (MAE) of 0.08 mg kg−1. The DSM model had an E of 0.69 and MAE of 0.11 mg kg−1. The map of predicted soil Cd concentrations were compared against 307 winter wheat (Triticum aestivum L.) grain samples with laboratory-analyzed Cd concentrations. Areas in the map with low soil Cd concentrations had a high frequency of lower grain Cd concentrations. The map thus seemed to have potential for finding areas suitable for production of low-Cd winter wheat; e.g., for baby food.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agronomy13020317</doi><orcidid>https://orcid.org/0000-0002-8428-8851</orcidid><orcidid>https://orcid.org/0000-0001-9946-0979</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4395 |
ispartof | Agronomy (Basel), 2023, Vol.13 (2), p.317 |
issn | 2073-4395 2073-4395 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a1227f8c9340430ab0e15c7832ecfffd |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Agricultural land Agricultural Science Agriculture Arable land Baby foods Cadmium Calibration Cereals Clay Crop production Datasets Digital mapping digital soil mapping Fluorescence Food Fysisk geografi Gamma rays Grain Health risks Jordbruksvetenskap Laboratories Low concentrations Machine learning Mapping Markvetenskap Physical Geography PXRF Regression models Soil mapping Soil maps Soil Science Soils Triticum aestivum Wheat Winter wheat |
title | Digital Soil Mapping of Cadmium: Identifying Arable Land for Producing Winter Wheat with Low Concentrations of Cadmium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A05%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Soil%20Mapping%20of%20Cadmium:%20Identifying%20Arable%20Land%20for%20Producing%20Winter%20Wheat%20with%20Low%20Concentrations%20of%20Cadmium&rft.jtitle=Agronomy%20(Basel)&rft.au=Adler,%20Karl&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2023&rft.volume=13&rft.issue=2&rft.spage=317&rft.pages=317-&rft.issn=2073-4395&rft.eissn=2073-4395&rft_id=info:doi/10.3390/agronomy13020317&rft_dat=%3Cgale_doaj_%3EA742993606%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-764e73327cf2803c01fd8c6e52230f8a40f2b06d4a686a83f565332c224b4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779504631&rft_id=info:pmid/&rft_galeid=A742993606&rfr_iscdi=true |