Loading…
Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition
There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG...
Saved in:
Published in: | Fractal and fractional 2024-10, Vol.8 (10), p.551 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43 |
container_end_page | |
container_issue | 10 |
container_start_page | 551 |
container_title | Fractal and fractional |
container_volume | 8 |
creator | Lee, Dong Chan Jeong, Min Su Jeong, Seong In Jung, Seung Yong Park, Kang Ryoung |
description | There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods. |
doi_str_mv | 10.3390/fractalfract8100551 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a136a1e4a9bc485f91b84f59742e17d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814093109</galeid><doaj_id>oai_doaj_org_article_a136a1e4a9bc485f91b84f59742e17d0</doaj_id><sourcerecordid>A814093109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43</originalsourceid><addsrcrecordid>eNptUU1rHDEMNaWBhk1-QS-Gnif153h8zHcDC4E2PRvtWB683bW39uSQf19vpoQcghGSHk-PJ4uQr5xdSGnZ91BgnGH3mgbOmNb8EzkVmqlOcs4-v6u_kPNat4wxYazUzJySP7d1jnuYY040B3q3aNGbuMdUjyAkT3_h1Nr5jXWV_Qv9iVNrKw250BvEA10jlBTT1F1BRU_vMXksjTbmKcXj6Bk5CbCreP4_r8jvu9un6x_d-vH-4fpy3Y2SmbkzSvTGG6UMFwIsGGMZhF7CIEfhe_Dch7CRwIPxQTPUQUuzwUHwniMblVyRh0XXZ9i6Q2n7lReXIbpXIJfJQZnjuEMHXPbAUYHdjGrQwfLNoIK2zQNy41nT-rZoHUr--4x1dtv8XFKz7yQXrBeDsrqxLhbWBE00ppDn9pHtedzHMScMseGXA1fMSt5iReQyMJZca8HwZpMzd7yq--Cq8h84YZe4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120628495</pqid></control><display><type>article</type><title>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</title><source>Publicly Available Content (ProQuest)</source><creator>Lee, Dong Chan ; Jeong, Min Su ; Jeong, Seong In ; Jung, Seung Yong ; Park, Kang Ryoung</creator><creatorcontrib>Lee, Dong Chan ; Jeong, Min Su ; Jeong, Seong In ; Jung, Seung Yong ; Park, Kang Ryoung</creatorcontrib><description>There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract8100551</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>body segmentation ; Complexity ; Crime prevention ; Datasets ; Deep learning ; Fractal analysis ; fractal dimension ; Fractal geometry ; Fractals ; Gender ; gender recognition ; Image enhancement ; Image segmentation ; Infrared analysis ; Infrared imagery ; Infrared imaging ; infrared light images ; Light ; Methods ; Semantics ; Surveillance ; surveillance system ; Texture recognition</subject><ispartof>Fractal and fractional, 2024-10, Vol.8 (10), p.551</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43</cites><orcidid>0009-0001-4496-0789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120628495/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120628495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Lee, Dong Chan</creatorcontrib><creatorcontrib>Jeong, Min Su</creatorcontrib><creatorcontrib>Jeong, Seong In</creatorcontrib><creatorcontrib>Jung, Seung Yong</creatorcontrib><creatorcontrib>Park, Kang Ryoung</creatorcontrib><title>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</title><title>Fractal and fractional</title><description>There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods.</description><subject>body segmentation</subject><subject>Complexity</subject><subject>Crime prevention</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Fractal analysis</subject><subject>fractal dimension</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Gender</subject><subject>gender recognition</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Infrared analysis</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>infrared light images</subject><subject>Light</subject><subject>Methods</subject><subject>Semantics</subject><subject>Surveillance</subject><subject>surveillance system</subject><subject>Texture recognition</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rHDEMNaWBhk1-QS-Gnif153h8zHcDC4E2PRvtWB683bW39uSQf19vpoQcghGSHk-PJ4uQr5xdSGnZ91BgnGH3mgbOmNb8EzkVmqlOcs4-v6u_kPNat4wxYazUzJySP7d1jnuYY040B3q3aNGbuMdUjyAkT3_h1Nr5jXWV_Qv9iVNrKw250BvEA10jlBTT1F1BRU_vMXksjTbmKcXj6Bk5CbCreP4_r8jvu9un6x_d-vH-4fpy3Y2SmbkzSvTGG6UMFwIsGGMZhF7CIEfhe_Dch7CRwIPxQTPUQUuzwUHwniMblVyRh0XXZ9i6Q2n7lReXIbpXIJfJQZnjuEMHXPbAUYHdjGrQwfLNoIK2zQNy41nT-rZoHUr--4x1dtv8XFKz7yQXrBeDsrqxLhbWBE00ppDn9pHtedzHMScMseGXA1fMSt5iReQyMJZca8HwZpMzd7yq--Cq8h84YZe4</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lee, Dong Chan</creator><creator>Jeong, Min Su</creator><creator>Jeong, Seong In</creator><creator>Jung, Seung Yong</creator><creator>Park, Kang Ryoung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-4496-0789</orcidid></search><sort><creationdate>20241001</creationdate><title>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</title><author>Lee, Dong Chan ; Jeong, Min Su ; Jeong, Seong In ; Jung, Seung Yong ; Park, Kang Ryoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>body segmentation</topic><topic>Complexity</topic><topic>Crime prevention</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Fractal analysis</topic><topic>fractal dimension</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Gender</topic><topic>gender recognition</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Infrared analysis</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>infrared light images</topic><topic>Light</topic><topic>Methods</topic><topic>Semantics</topic><topic>Surveillance</topic><topic>surveillance system</topic><topic>Texture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Dong Chan</creatorcontrib><creatorcontrib>Jeong, Min Su</creatorcontrib><creatorcontrib>Jeong, Seong In</creatorcontrib><creatorcontrib>Jung, Seung Yong</creatorcontrib><creatorcontrib>Park, Kang Ryoung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Dong Chan</au><au>Jeong, Min Su</au><au>Jeong, Seong In</au><au>Jung, Seung Yong</au><au>Park, Kang Ryoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</atitle><jtitle>Fractal and fractional</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>551</spage><pages>551-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract8100551</doi><orcidid>https://orcid.org/0009-0001-4496-0789</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2024-10, Vol.8 (10), p.551 |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a136a1e4a9bc485f91b84f59742e17d0 |
source | Publicly Available Content (ProQuest) |
subjects | body segmentation Complexity Crime prevention Datasets Deep learning Fractal analysis fractal dimension Fractal geometry Fractals Gender gender recognition Image enhancement Image segmentation Infrared analysis Infrared imagery Infrared imaging infrared light images Light Methods Semantics Surveillance surveillance system Texture recognition |
title | Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Fractal%20Dimension%20and%20Segmentation%20of%20Body%20Regions%20for%20Deep%20Learning-Based%20Gender%20Recognition&rft.jtitle=Fractal%20and%20fractional&rft.au=Lee,%20Dong%20Chan&rft.date=2024-10-01&rft.volume=8&rft.issue=10&rft.spage=551&rft.pages=551-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract8100551&rft_dat=%3Cgale_doaj_%3EA814093109%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120628495&rft_id=info:pmid/&rft_galeid=A814093109&rfr_iscdi=true |