Loading…

Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition

There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional 2024-10, Vol.8 (10), p.551
Main Authors: Lee, Dong Chan, Jeong, Min Su, Jeong, Seong In, Jung, Seung Yong, Park, Kang Ryoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43
container_end_page
container_issue 10
container_start_page 551
container_title Fractal and fractional
container_volume 8
creator Lee, Dong Chan
Jeong, Min Su
Jeong, Seong In
Jung, Seung Yong
Park, Kang Ryoung
description There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods.
doi_str_mv 10.3390/fractalfract8100551
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a136a1e4a9bc485f91b84f59742e17d0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814093109</galeid><doaj_id>oai_doaj_org_article_a136a1e4a9bc485f91b84f59742e17d0</doaj_id><sourcerecordid>A814093109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43</originalsourceid><addsrcrecordid>eNptUU1rHDEMNaWBhk1-QS-Gnif153h8zHcDC4E2PRvtWB683bW39uSQf19vpoQcghGSHk-PJ4uQr5xdSGnZ91BgnGH3mgbOmNb8EzkVmqlOcs4-v6u_kPNat4wxYazUzJySP7d1jnuYY040B3q3aNGbuMdUjyAkT3_h1Nr5jXWV_Qv9iVNrKw250BvEA10jlBTT1F1BRU_vMXksjTbmKcXj6Bk5CbCreP4_r8jvu9un6x_d-vH-4fpy3Y2SmbkzSvTGG6UMFwIsGGMZhF7CIEfhe_Dch7CRwIPxQTPUQUuzwUHwniMblVyRh0XXZ9i6Q2n7lReXIbpXIJfJQZnjuEMHXPbAUYHdjGrQwfLNoIK2zQNy41nT-rZoHUr--4x1dtv8XFKz7yQXrBeDsrqxLhbWBE00ppDn9pHtedzHMScMseGXA1fMSt5iReQyMJZca8HwZpMzd7yq--Cq8h84YZe4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120628495</pqid></control><display><type>article</type><title>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</title><source>Publicly Available Content (ProQuest)</source><creator>Lee, Dong Chan ; Jeong, Min Su ; Jeong, Seong In ; Jung, Seung Yong ; Park, Kang Ryoung</creator><creatorcontrib>Lee, Dong Chan ; Jeong, Min Su ; Jeong, Seong In ; Jung, Seung Yong ; Park, Kang Ryoung</creatorcontrib><description>There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract8100551</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>body segmentation ; Complexity ; Crime prevention ; Datasets ; Deep learning ; Fractal analysis ; fractal dimension ; Fractal geometry ; Fractals ; Gender ; gender recognition ; Image enhancement ; Image segmentation ; Infrared analysis ; Infrared imagery ; Infrared imaging ; infrared light images ; Light ; Methods ; Semantics ; Surveillance ; surveillance system ; Texture recognition</subject><ispartof>Fractal and fractional, 2024-10, Vol.8 (10), p.551</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43</cites><orcidid>0009-0001-4496-0789</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120628495/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120628495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Lee, Dong Chan</creatorcontrib><creatorcontrib>Jeong, Min Su</creatorcontrib><creatorcontrib>Jeong, Seong In</creatorcontrib><creatorcontrib>Jung, Seung Yong</creatorcontrib><creatorcontrib>Park, Kang Ryoung</creatorcontrib><title>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</title><title>Fractal and fractional</title><description>There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods.</description><subject>body segmentation</subject><subject>Complexity</subject><subject>Crime prevention</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Fractal analysis</subject><subject>fractal dimension</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Gender</subject><subject>gender recognition</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Infrared analysis</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>infrared light images</subject><subject>Light</subject><subject>Methods</subject><subject>Semantics</subject><subject>Surveillance</subject><subject>surveillance system</subject><subject>Texture recognition</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUU1rHDEMNaWBhk1-QS-Gnif153h8zHcDC4E2PRvtWB683bW39uSQf19vpoQcghGSHk-PJ4uQr5xdSGnZ91BgnGH3mgbOmNb8EzkVmqlOcs4-v6u_kPNat4wxYazUzJySP7d1jnuYY040B3q3aNGbuMdUjyAkT3_h1Nr5jXWV_Qv9iVNrKw250BvEA10jlBTT1F1BRU_vMXksjTbmKcXj6Bk5CbCreP4_r8jvu9un6x_d-vH-4fpy3Y2SmbkzSvTGG6UMFwIsGGMZhF7CIEfhe_Dch7CRwIPxQTPUQUuzwUHwniMblVyRh0XXZ9i6Q2n7lReXIbpXIJfJQZnjuEMHXPbAUYHdjGrQwfLNoIK2zQNy41nT-rZoHUr--4x1dtv8XFKz7yQXrBeDsrqxLhbWBE00ppDn9pHtedzHMScMseGXA1fMSt5iReQyMJZca8HwZpMzd7yq--Cq8h84YZe4</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lee, Dong Chan</creator><creator>Jeong, Min Su</creator><creator>Jeong, Seong In</creator><creator>Jung, Seung Yong</creator><creator>Park, Kang Ryoung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-4496-0789</orcidid></search><sort><creationdate>20241001</creationdate><title>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</title><author>Lee, Dong Chan ; Jeong, Min Su ; Jeong, Seong In ; Jung, Seung Yong ; Park, Kang Ryoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>body segmentation</topic><topic>Complexity</topic><topic>Crime prevention</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Fractal analysis</topic><topic>fractal dimension</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Gender</topic><topic>gender recognition</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Infrared analysis</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>infrared light images</topic><topic>Light</topic><topic>Methods</topic><topic>Semantics</topic><topic>Surveillance</topic><topic>surveillance system</topic><topic>Texture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Dong Chan</creatorcontrib><creatorcontrib>Jeong, Min Su</creatorcontrib><creatorcontrib>Jeong, Seong In</creatorcontrib><creatorcontrib>Jung, Seung Yong</creatorcontrib><creatorcontrib>Park, Kang Ryoung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Dong Chan</au><au>Jeong, Min Su</au><au>Jeong, Seong In</au><au>Jung, Seung Yong</au><au>Park, Kang Ryoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition</atitle><jtitle>Fractal and fractional</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>551</spage><pages>551-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>There are few studies utilizing only IR cameras for long-distance gender recognition, and they have shown low recognition performance due to their lack of color and texture information in IR images with a complex background. Therefore, a rough body segmentation-based gender recognition network (RBSG-Net) is proposed, with enhanced gender recognition performance achieved by emphasizing the silhouette of a person through a body segmentation network. Anthropometric loss for the segmentation network and an adaptive body attention module are also proposed, which effectively integrate the segmentation and classification networks. To enhance the analytic capabilities of the proposed framework, fractal dimension estimation was introduced into the system to gain insights into the complexity and irregularity of the body region, thereby predicting the accuracy of body segmentation. For experiments, near-infrared images from the Sun Yat-sen University multiple modality re-identification version 1 (SYSU-MM01) dataset and thermal images from the Dongguk body-based gender version 2 (DBGender-DB2) database were used. The equal error rates of gender recognition by the proposed model were 4.320% and 8.303% for these two databases, respectively, surpassing state-of-the-art methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract8100551</doi><orcidid>https://orcid.org/0009-0001-4496-0789</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2504-3110
ispartof Fractal and fractional, 2024-10, Vol.8 (10), p.551
issn 2504-3110
2504-3110
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a136a1e4a9bc485f91b84f59742e17d0
source Publicly Available Content (ProQuest)
subjects body segmentation
Complexity
Crime prevention
Datasets
Deep learning
Fractal analysis
fractal dimension
Fractal geometry
Fractals
Gender
gender recognition
Image enhancement
Image segmentation
Infrared analysis
Infrared imagery
Infrared imaging
infrared light images
Light
Methods
Semantics
Surveillance
surveillance system
Texture recognition
title Estimation of Fractal Dimension and Segmentation of Body Regions for Deep Learning-Based Gender Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Fractal%20Dimension%20and%20Segmentation%20of%20Body%20Regions%20for%20Deep%20Learning-Based%20Gender%20Recognition&rft.jtitle=Fractal%20and%20fractional&rft.au=Lee,%20Dong%20Chan&rft.date=2024-10-01&rft.volume=8&rft.issue=10&rft.spage=551&rft.pages=551-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract8100551&rft_dat=%3Cgale_doaj_%3EA814093109%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-74267d7447122a9a7790af63a83c2d6ad1dffb3a1f7df50e5f537be82161e0c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120628495&rft_id=info:pmid/&rft_galeid=A814093109&rfr_iscdi=true