Loading…

Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface

Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fi...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in bioengineering and biotechnology 2021-04, Vol.9, p.657244-657244
Main Authors: Karagöz, Zeynep, Geuens, Thomas, LaPointe, Vanessa L S, van Griensven, Martijn, Carlier, Aurélie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3
cites cdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3
container_end_page 657244
container_issue
container_start_page 657244
container_title Frontiers in bioengineering and biotechnology
container_volume 9
creator Karagöz, Zeynep
Geuens, Thomas
LaPointe, Vanessa L S
van Griensven, Martijn
Carlier, Aurélie
description Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.
doi_str_mv 10.3389/fbioe.2021.657244
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a13c7db2351c4e268f06541b48834f5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a13c7db2351c4e268f06541b48834f5c</doaj_id><sourcerecordid>2528434177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EolXpD-CCfOTQLP6MHQ5IaFVgpa24FHG0HHu8dZXEi-2tyr8n6ZaqPc1o_M4znnkRek_JinPdfQp9TLBihNFVKxUT4hU6ZaxrG0G1fP0sP0HnpdwSQiiTSmr2Fp1w3nWt0vQUxd9xusDbVOACp4yvI3zGV7bewGhrdHbAV8nDEKcdTgFv485OHq_TuIcaa0wTthXPYryGYWgu72u2bs4Og80LJcd7vJkq5DCX36E3wQ4Fzh_jGfr17fJ6_aPZ_vy-WX_dNk60sjYq9IIrJoVvgTHhNBHcMg7Qad8ropglQVrX05ZDAA_Ci9CJnhMtKWvB8TO0OXJ9srdmn-No81-TbDQPhZR3xuZ5twGMpdwp3zMuqRPAWh1IKwXthdZcBLmwvhxZ-0M_gncwzRsOL6AvX6Z4Y3bpzmhKFSV8Bnx8BOT05wClmjGW5UR2gnQohkmmBRdUqVlKj1KXUykZwtMYSsziuHlw3CyOm6Pjc8-H5_976vjvL_8Hs7uoIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528434177</pqid></control><display><type>article</type><title>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</title><source>PubMed Central</source><creator>Karagöz, Zeynep ; Geuens, Thomas ; LaPointe, Vanessa L S ; van Griensven, Martijn ; Carlier, Aurélie</creator><creatorcontrib>Karagöz, Zeynep ; Geuens, Thomas ; LaPointe, Vanessa L S ; van Griensven, Martijn ; Carlier, Aurélie</creatorcontrib><description>Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2021.657244</identifier><identifier>PMID: 33996781</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Bioengineering and Biotechnology ; computational model ; extracellular matrix ; integrin ; ligand competition ; ordinary differential equation</subject><ispartof>Frontiers in bioengineering and biotechnology, 2021-04, Vol.9, p.657244-657244</ispartof><rights>Copyright © 2021 Karagöz, Geuens, LaPointe, van Griensven and Carlier.</rights><rights>Copyright © 2021 Karagöz, Geuens, LaPointe, van Griensven and Carlier. 2021 Karagöz, Geuens, LaPointe, van Griensven and Carlier</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</citedby><cites>FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117103/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117103/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33996781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karagöz, Zeynep</creatorcontrib><creatorcontrib>Geuens, Thomas</creatorcontrib><creatorcontrib>LaPointe, Vanessa L S</creatorcontrib><creatorcontrib>van Griensven, Martijn</creatorcontrib><creatorcontrib>Carlier, Aurélie</creatorcontrib><title>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.</description><subject>Bioengineering and Biotechnology</subject><subject>computational model</subject><subject>extracellular matrix</subject><subject>integrin</subject><subject>ligand competition</subject><subject>ordinary differential equation</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v1DAQhi0EolXpD-CCfOTQLP6MHQ5IaFVgpa24FHG0HHu8dZXEi-2tyr8n6ZaqPc1o_M4znnkRek_JinPdfQp9TLBihNFVKxUT4hU6ZaxrG0G1fP0sP0HnpdwSQiiTSmr2Fp1w3nWt0vQUxd9xusDbVOACp4yvI3zGV7bewGhrdHbAV8nDEKcdTgFv485OHq_TuIcaa0wTthXPYryGYWgu72u2bs4Og80LJcd7vJkq5DCX36E3wQ4Fzh_jGfr17fJ6_aPZ_vy-WX_dNk60sjYq9IIrJoVvgTHhNBHcMg7Qad8ropglQVrX05ZDAA_Ci9CJnhMtKWvB8TO0OXJ9srdmn-No81-TbDQPhZR3xuZ5twGMpdwp3zMuqRPAWh1IKwXthdZcBLmwvhxZ-0M_gncwzRsOL6AvX6Z4Y3bpzmhKFSV8Bnx8BOT05wClmjGW5UR2gnQohkmmBRdUqVlKj1KXUykZwtMYSsziuHlw3CyOm6Pjc8-H5_976vjvL_8Hs7uoIQ</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Karagöz, Zeynep</creator><creator>Geuens, Thomas</creator><creator>LaPointe, Vanessa L S</creator><creator>van Griensven, Martijn</creator><creator>Carlier, Aurélie</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210429</creationdate><title>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</title><author>Karagöz, Zeynep ; Geuens, Thomas ; LaPointe, Vanessa L S ; van Griensven, Martijn ; Carlier, Aurélie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioengineering and Biotechnology</topic><topic>computational model</topic><topic>extracellular matrix</topic><topic>integrin</topic><topic>ligand competition</topic><topic>ordinary differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karagöz, Zeynep</creatorcontrib><creatorcontrib>Geuens, Thomas</creatorcontrib><creatorcontrib>LaPointe, Vanessa L S</creatorcontrib><creatorcontrib>van Griensven, Martijn</creatorcontrib><creatorcontrib>Carlier, Aurélie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karagöz, Zeynep</au><au>Geuens, Thomas</au><au>LaPointe, Vanessa L S</au><au>van Griensven, Martijn</au><au>Carlier, Aurélie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2021-04-29</date><risdate>2021</risdate><volume>9</volume><spage>657244</spage><epage>657244</epage><pages>657244-657244</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33996781</pmid><doi>10.3389/fbioe.2021.657244</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-4185
ispartof Frontiers in bioengineering and biotechnology, 2021-04, Vol.9, p.657244-657244
issn 2296-4185
2296-4185
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a13c7db2351c4e268f06541b48834f5c
source PubMed Central
subjects Bioengineering and Biotechnology
computational model
extracellular matrix
integrin
ligand competition
ordinary differential equation
title Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Win,%20Lose,%20or%20Tie:%20Mathematical%20Modeling%20of%20Ligand%20Competition%20at%20the%20Cell-Extracellular%20Matrix%20Interface&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Karag%C3%B6z,%20Zeynep&rft.date=2021-04-29&rft.volume=9&rft.spage=657244&rft.epage=657244&rft.pages=657244-657244&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2021.657244&rft_dat=%3Cproquest_doaj_%3E2528434177%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528434177&rft_id=info:pmid/33996781&rfr_iscdi=true