Loading…
Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface
Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fi...
Saved in:
Published in: | Frontiers in bioengineering and biotechnology 2021-04, Vol.9, p.657244-657244 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3 |
container_end_page | 657244 |
container_issue | |
container_start_page | 657244 |
container_title | Frontiers in bioengineering and biotechnology |
container_volume | 9 |
creator | Karagöz, Zeynep Geuens, Thomas LaPointe, Vanessa L S van Griensven, Martijn Carlier, Aurélie |
description | Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems. |
doi_str_mv | 10.3389/fbioe.2021.657244 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a13c7db2351c4e268f06541b48834f5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a13c7db2351c4e268f06541b48834f5c</doaj_id><sourcerecordid>2528434177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EolXpD-CCfOTQLP6MHQ5IaFVgpa24FHG0HHu8dZXEi-2tyr8n6ZaqPc1o_M4znnkRek_JinPdfQp9TLBihNFVKxUT4hU6ZaxrG0G1fP0sP0HnpdwSQiiTSmr2Fp1w3nWt0vQUxd9xusDbVOACp4yvI3zGV7bewGhrdHbAV8nDEKcdTgFv485OHq_TuIcaa0wTthXPYryGYWgu72u2bs4Og80LJcd7vJkq5DCX36E3wQ4Fzh_jGfr17fJ6_aPZ_vy-WX_dNk60sjYq9IIrJoVvgTHhNBHcMg7Qad8ropglQVrX05ZDAA_Ci9CJnhMtKWvB8TO0OXJ9srdmn-No81-TbDQPhZR3xuZ5twGMpdwp3zMuqRPAWh1IKwXthdZcBLmwvhxZ-0M_gncwzRsOL6AvX6Z4Y3bpzmhKFSV8Bnx8BOT05wClmjGW5UR2gnQohkmmBRdUqVlKj1KXUykZwtMYSsziuHlw3CyOm6Pjc8-H5_976vjvL_8Hs7uoIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528434177</pqid></control><display><type>article</type><title>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</title><source>PubMed Central</source><creator>Karagöz, Zeynep ; Geuens, Thomas ; LaPointe, Vanessa L S ; van Griensven, Martijn ; Carlier, Aurélie</creator><creatorcontrib>Karagöz, Zeynep ; Geuens, Thomas ; LaPointe, Vanessa L S ; van Griensven, Martijn ; Carlier, Aurélie</creatorcontrib><description>Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.</description><identifier>ISSN: 2296-4185</identifier><identifier>EISSN: 2296-4185</identifier><identifier>DOI: 10.3389/fbioe.2021.657244</identifier><identifier>PMID: 33996781</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Bioengineering and Biotechnology ; computational model ; extracellular matrix ; integrin ; ligand competition ; ordinary differential equation</subject><ispartof>Frontiers in bioengineering and biotechnology, 2021-04, Vol.9, p.657244-657244</ispartof><rights>Copyright © 2021 Karagöz, Geuens, LaPointe, van Griensven and Carlier.</rights><rights>Copyright © 2021 Karagöz, Geuens, LaPointe, van Griensven and Carlier. 2021 Karagöz, Geuens, LaPointe, van Griensven and Carlier</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</citedby><cites>FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117103/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117103/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33996781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karagöz, Zeynep</creatorcontrib><creatorcontrib>Geuens, Thomas</creatorcontrib><creatorcontrib>LaPointe, Vanessa L S</creatorcontrib><creatorcontrib>van Griensven, Martijn</creatorcontrib><creatorcontrib>Carlier, Aurélie</creatorcontrib><title>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</title><title>Frontiers in bioengineering and biotechnology</title><addtitle>Front Bioeng Biotechnol</addtitle><description>Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.</description><subject>Bioengineering and Biotechnology</subject><subject>computational model</subject><subject>extracellular matrix</subject><subject>integrin</subject><subject>ligand competition</subject><subject>ordinary differential equation</subject><issn>2296-4185</issn><issn>2296-4185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1v1DAQhi0EolXpD-CCfOTQLP6MHQ5IaFVgpa24FHG0HHu8dZXEi-2tyr8n6ZaqPc1o_M4znnkRek_JinPdfQp9TLBihNFVKxUT4hU6ZaxrG0G1fP0sP0HnpdwSQiiTSmr2Fp1w3nWt0vQUxd9xusDbVOACp4yvI3zGV7bewGhrdHbAV8nDEKcdTgFv485OHq_TuIcaa0wTthXPYryGYWgu72u2bs4Og80LJcd7vJkq5DCX36E3wQ4Fzh_jGfr17fJ6_aPZ_vy-WX_dNk60sjYq9IIrJoVvgTHhNBHcMg7Qad8ropglQVrX05ZDAA_Ci9CJnhMtKWvB8TO0OXJ9srdmn-No81-TbDQPhZR3xuZ5twGMpdwp3zMuqRPAWh1IKwXthdZcBLmwvhxZ-0M_gncwzRsOL6AvX6Z4Y3bpzmhKFSV8Bnx8BOT05wClmjGW5UR2gnQohkmmBRdUqVlKj1KXUykZwtMYSsziuHlw3CyOm6Pjc8-H5_976vjvL_8Hs7uoIQ</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Karagöz, Zeynep</creator><creator>Geuens, Thomas</creator><creator>LaPointe, Vanessa L S</creator><creator>van Griensven, Martijn</creator><creator>Carlier, Aurélie</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210429</creationdate><title>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</title><author>Karagöz, Zeynep ; Geuens, Thomas ; LaPointe, Vanessa L S ; van Griensven, Martijn ; Carlier, Aurélie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioengineering and Biotechnology</topic><topic>computational model</topic><topic>extracellular matrix</topic><topic>integrin</topic><topic>ligand competition</topic><topic>ordinary differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karagöz, Zeynep</creatorcontrib><creatorcontrib>Geuens, Thomas</creatorcontrib><creatorcontrib>LaPointe, Vanessa L S</creatorcontrib><creatorcontrib>van Griensven, Martijn</creatorcontrib><creatorcontrib>Carlier, Aurélie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in bioengineering and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karagöz, Zeynep</au><au>Geuens, Thomas</au><au>LaPointe, Vanessa L S</au><au>van Griensven, Martijn</au><au>Carlier, Aurélie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface</atitle><jtitle>Frontiers in bioengineering and biotechnology</jtitle><addtitle>Front Bioeng Biotechnol</addtitle><date>2021-04-29</date><risdate>2021</risdate><volume>9</volume><spage>657244</spage><epage>657244</epage><pages>657244-657244</pages><issn>2296-4185</issn><eissn>2296-4185</eissn><abstract>Integrin transmembrane proteins conduct mechanotransduction at the cell-extracellular matrix (ECM) interface. This process is central to cellular homeostasis and therefore is particularly important when designing instructive biomaterials and organoid culture systems. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development. Toward the bigger goal of fully functional organoid development, we hypothesize that resolving the dynamics of ECM-integrin interactions will be highly instructive. To this end, we developed a mathematical model that enabled us to simulate three main interactions, namely integrin activation, ligand binding, and integrin clustering. Different from previously published computational models, we account for the binding of more than one type of ligand to the integrin. This competition between ligands defines the fate of the system. We have demonstrated that an increase in the initial concentration of ligands does not ensure an increase in the steady state concentration of ligand-bound integrins. The ligand with higher binding rate occupies more integrins at the steady state than does the competing ligand. With cell type specific, quantitative input on integrin-ligand binding rates, this model can be used to develop instructive cell culture systems.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33996781</pmid><doi>10.3389/fbioe.2021.657244</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-4185 |
ispartof | Frontiers in bioengineering and biotechnology, 2021-04, Vol.9, p.657244-657244 |
issn | 2296-4185 2296-4185 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a13c7db2351c4e268f06541b48834f5c |
source | PubMed Central |
subjects | Bioengineering and Biotechnology computational model extracellular matrix integrin ligand competition ordinary differential equation |
title | Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell-Extracellular Matrix Interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A09%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Win,%20Lose,%20or%20Tie:%20Mathematical%20Modeling%20of%20Ligand%20Competition%20at%20the%20Cell-Extracellular%20Matrix%20Interface&rft.jtitle=Frontiers%20in%20bioengineering%20and%20biotechnology&rft.au=Karag%C3%B6z,%20Zeynep&rft.date=2021-04-29&rft.volume=9&rft.spage=657244&rft.epage=657244&rft.pages=657244-657244&rft.issn=2296-4185&rft.eissn=2296-4185&rft_id=info:doi/10.3389/fbioe.2021.657244&rft_dat=%3Cproquest_doaj_%3E2528434177%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-7fb437254d6e224c8043a23ee98db7072a0f5acb163efede4d4f94b3085126ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2528434177&rft_id=info:pmid/33996781&rfr_iscdi=true |