Loading…

An Interference Mitigation Method for FMCW Radar Based on Time-Frequency Distribution and Dual-Domain Fusion Filtering

Radio frequency interference (RFI) significantly hampers the target detection performance of frequency-modulated continuous-wave radar. To address the problem and maintain the target echo signal, this paper proposes a priori assumption on the interference component nature in the radar received signa...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (11), p.3288
Main Authors: Zhou, Yu, Cao, Ronggang, Zhang, Anqi, Li, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c469t-bce285fa107b227ebebace86448ca4e378f40ccf877d3e789ad42f0223f158c93
container_end_page
container_issue 11
container_start_page 3288
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Zhou, Yu
Cao, Ronggang
Zhang, Anqi
Li, Ping
description Radio frequency interference (RFI) significantly hampers the target detection performance of frequency-modulated continuous-wave radar. To address the problem and maintain the target echo signal, this paper proposes a priori assumption on the interference component nature in the radar received signal, as well as a method for interference estimation and mitigation via time-frequency analysis. The solution employs Fourier synchrosqueezed transform to implement the radar's beat signal transformation from time domain to time-frequency domain, thus converting the interference mitigation to the task of time-frequency distribution image restoration. The solution proposes the use of image processing based on the dual-tree complex wavelet transform and combines it with the spatial domain-based approach, thereby establishing a dual-domain fusion interference filter for time-frequency distribution images. This paper also presents a convolutional neural network model of structurally improved UNet++, which serves as the interference estimator. The proposed solution demonstrated its capability against various forms of RFI through the simulation experiment and showed a superior interference mitigation performance over other CNN model-based approaches.
doi_str_mv 10.3390/s24113288
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a14a4b40990d4f22b9536e370966fb4a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A797900967</galeid><doaj_id>oai_doaj_org_article_a14a4b40990d4f22b9536e370966fb4a</doaj_id><sourcerecordid>A797900967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-bce285fa107b227ebebace86448ca4e378f40ccf877d3e789ad42f0223f158c93</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhlcIREvhwB9AlrjAYYu_srZPKCQNRGqEhIo4Wl7vOHW0axd7t1L_PU7TRi3ywdbMO898eKrqPcHnjCn8JVNOCKNSvqhOCae8lpTil0_eJ9WbnHcYU8aYfF2dMCkVx5KcVrfzgNZhhOQgQbCANn70WzP6GNAGxuvYIRcTWm0Wf9Av05mEvpkMHSruKz9AvUrwdyqBd2jp85h8O92HmtCh5WT6ehkH4wNaTXlvXvm-pPJh-7Z65Uyf4d3DfVb9Xl1cLX7Ulz-_rxfzy9ryRo11a4HKmTMEi5ZSAS20xoJsOJfWcGBCOo6tdVKIjoGQynScOkwpc2QmrWJn1frA7aLZ6ZvkB5PudDRe3xti2mqTRm970IZww1uOlcIdd5S2asaakgKrpnEtN4X19cC6mdoBOgthTKZ_Bn3uCf5ab-OtJoSIUjEuhE8PhBTL1PKoB58t9L0JEKesGRa4yMrHFOnH_6S7OKVQZlVUTcFhzPfA84Nqa0oHPrhYEttyOhi8jQGcL_a5UELh0ocoAZ8PATbFnBO4Y_kE6_0u6eMuFe2Hp_0elY_Lw_4BDk3DRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067440040</pqid></control><display><type>article</type><title>An Interference Mitigation Method for FMCW Radar Based on Time-Frequency Distribution and Dual-Domain Fusion Filtering</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zhou, Yu ; Cao, Ronggang ; Zhang, Anqi ; Li, Ping</creator><creatorcontrib>Zhou, Yu ; Cao, Ronggang ; Zhang, Anqi ; Li, Ping</creatorcontrib><description>Radio frequency interference (RFI) significantly hampers the target detection performance of frequency-modulated continuous-wave radar. To address the problem and maintain the target echo signal, this paper proposes a priori assumption on the interference component nature in the radar received signal, as well as a method for interference estimation and mitigation via time-frequency analysis. The solution employs Fourier synchrosqueezed transform to implement the radar's beat signal transformation from time domain to time-frequency domain, thus converting the interference mitigation to the task of time-frequency distribution image restoration. The solution proposes the use of image processing based on the dual-tree complex wavelet transform and combines it with the spatial domain-based approach, thereby establishing a dual-domain fusion interference filter for time-frequency distribution images. This paper also presents a convolutional neural network model of structurally improved UNet++, which serves as the interference estimator. The proposed solution demonstrated its capability against various forms of RFI through the simulation experiment and showed a superior interference mitigation performance over other CNN model-based approaches.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24113288</identifier><identifier>PMID: 38894081</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Analysis ; convolutional neural network ; Deep learning ; dual-tree complex wavelet transform ; Equipment and supplies ; False alarms ; Fourier transforms ; Frequency distribution ; Frequency modulation ; Image processing ; interference mitigation ; Methods ; Neural networks ; Optimization ; Parameter estimation ; Radar systems ; Signal processing ; Sparsity ; synchrosqueezed transform ; time–frequency transform</subject><ispartof>Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3288</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-bce285fa107b227ebebace86448ca4e378f40ccf877d3e789ad42f0223f158c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3067440040/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3067440040?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Cao, Ronggang</creatorcontrib><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>An Interference Mitigation Method for FMCW Radar Based on Time-Frequency Distribution and Dual-Domain Fusion Filtering</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Radio frequency interference (RFI) significantly hampers the target detection performance of frequency-modulated continuous-wave radar. To address the problem and maintain the target echo signal, this paper proposes a priori assumption on the interference component nature in the radar received signal, as well as a method for interference estimation and mitigation via time-frequency analysis. The solution employs Fourier synchrosqueezed transform to implement the radar's beat signal transformation from time domain to time-frequency domain, thus converting the interference mitigation to the task of time-frequency distribution image restoration. The solution proposes the use of image processing based on the dual-tree complex wavelet transform and combines it with the spatial domain-based approach, thereby establishing a dual-domain fusion interference filter for time-frequency distribution images. This paper also presents a convolutional neural network model of structurally improved UNet++, which serves as the interference estimator. The proposed solution demonstrated its capability against various forms of RFI through the simulation experiment and showed a superior interference mitigation performance over other CNN model-based approaches.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>dual-tree complex wavelet transform</subject><subject>Equipment and supplies</subject><subject>False alarms</subject><subject>Fourier transforms</subject><subject>Frequency distribution</subject><subject>Frequency modulation</subject><subject>Image processing</subject><subject>interference mitigation</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Radar systems</subject><subject>Signal processing</subject><subject>Sparsity</subject><subject>synchrosqueezed transform</subject><subject>time–frequency transform</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhlcIREvhwB9AlrjAYYu_srZPKCQNRGqEhIo4Wl7vOHW0axd7t1L_PU7TRi3ywdbMO898eKrqPcHnjCn8JVNOCKNSvqhOCae8lpTil0_eJ9WbnHcYU8aYfF2dMCkVx5KcVrfzgNZhhOQgQbCANn70WzP6GNAGxuvYIRcTWm0Wf9Av05mEvpkMHSruKz9AvUrwdyqBd2jp85h8O92HmtCh5WT6ehkH4wNaTXlvXvm-pPJh-7Z65Uyf4d3DfVb9Xl1cLX7Ulz-_rxfzy9ryRo11a4HKmTMEi5ZSAS20xoJsOJfWcGBCOo6tdVKIjoGQynScOkwpc2QmrWJn1frA7aLZ6ZvkB5PudDRe3xti2mqTRm970IZww1uOlcIdd5S2asaakgKrpnEtN4X19cC6mdoBOgthTKZ_Bn3uCf5ab-OtJoSIUjEuhE8PhBTL1PKoB58t9L0JEKesGRa4yMrHFOnH_6S7OKVQZlVUTcFhzPfA84Nqa0oHPrhYEttyOhi8jQGcL_a5UELh0ocoAZ8PATbFnBO4Y_kE6_0u6eMuFe2Hp_0elY_Lw_4BDk3DRg</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Zhou, Yu</creator><creator>Cao, Ronggang</creator><creator>Zhang, Anqi</creator><creator>Li, Ping</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240521</creationdate><title>An Interference Mitigation Method for FMCW Radar Based on Time-Frequency Distribution and Dual-Domain Fusion Filtering</title><author>Zhou, Yu ; Cao, Ronggang ; Zhang, Anqi ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-bce285fa107b227ebebace86448ca4e378f40ccf877d3e789ad42f0223f158c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>dual-tree complex wavelet transform</topic><topic>Equipment and supplies</topic><topic>False alarms</topic><topic>Fourier transforms</topic><topic>Frequency distribution</topic><topic>Frequency modulation</topic><topic>Image processing</topic><topic>interference mitigation</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Radar systems</topic><topic>Signal processing</topic><topic>Sparsity</topic><topic>synchrosqueezed transform</topic><topic>time–frequency transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Cao, Ronggang</creatorcontrib><creatorcontrib>Zhang, Anqi</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yu</au><au>Cao, Ronggang</au><au>Zhang, Anqi</au><au>Li, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interference Mitigation Method for FMCW Radar Based on Time-Frequency Distribution and Dual-Domain Fusion Filtering</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-05-21</date><risdate>2024</risdate><volume>24</volume><issue>11</issue><spage>3288</spage><pages>3288-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Radio frequency interference (RFI) significantly hampers the target detection performance of frequency-modulated continuous-wave radar. To address the problem and maintain the target echo signal, this paper proposes a priori assumption on the interference component nature in the radar received signal, as well as a method for interference estimation and mitigation via time-frequency analysis. The solution employs Fourier synchrosqueezed transform to implement the radar's beat signal transformation from time domain to time-frequency domain, thus converting the interference mitigation to the task of time-frequency distribution image restoration. The solution proposes the use of image processing based on the dual-tree complex wavelet transform and combines it with the spatial domain-based approach, thereby establishing a dual-domain fusion interference filter for time-frequency distribution images. This paper also presents a convolutional neural network model of structurally improved UNet++, which serves as the interference estimator. The proposed solution demonstrated its capability against various forms of RFI through the simulation experiment and showed a superior interference mitigation performance over other CNN model-based approaches.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38894081</pmid><doi>10.3390/s24113288</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-05, Vol.24 (11), p.3288
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a14a4b40990d4f22b9536e370966fb4a
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Analysis
convolutional neural network
Deep learning
dual-tree complex wavelet transform
Equipment and supplies
False alarms
Fourier transforms
Frequency distribution
Frequency modulation
Image processing
interference mitigation
Methods
Neural networks
Optimization
Parameter estimation
Radar systems
Signal processing
Sparsity
synchrosqueezed transform
time–frequency transform
title An Interference Mitigation Method for FMCW Radar Based on Time-Frequency Distribution and Dual-Domain Fusion Filtering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interference%20Mitigation%20Method%20for%20FMCW%20Radar%20Based%20on%20Time-Frequency%20Distribution%20and%20Dual-Domain%20Fusion%20Filtering&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhou,%20Yu&rft.date=2024-05-21&rft.volume=24&rft.issue=11&rft.spage=3288&rft.pages=3288-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24113288&rft_dat=%3Cgale_doaj_%3EA797900967%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-bce285fa107b227ebebace86448ca4e378f40ccf877d3e789ad42f0223f158c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3067440040&rft_id=info:pmid/38894081&rft_galeid=A797900967&rfr_iscdi=true