Loading…

CircRNA/miRNA/mRNA axis participates in the progression of partial bladder outlet obstruction

More and more evidence showed that circRNA/miRNA/mRNA axis played a vital role in the pathogenesis of some diseases. However, the role of circRNA/miRNA/mRNA axis in partial bladder outlet obstruction (pBOO) remains unknown. Our study aimed to explore the complex regulatory mechanism of circRNA/miRNA...

Full description

Saved in:
Bibliographic Details
Published in:BMC urology 2022-11, Vol.22 (1), p.191-191, Article 191
Main Authors: Zhu, Baoyi, Gao, Jun, Zhang, Yuying, Liao, Baojian, Zhu, Sihua, Li, Chunling, Liao, Junhao, Liu, Jianjia, Jiang, Chonghe, Zeng, Jianwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:More and more evidence showed that circRNA/miRNA/mRNA axis played a vital role in the pathogenesis of some diseases. However, the role of circRNA/miRNA/mRNA axis in partial bladder outlet obstruction (pBOO) remains unknown. Our study aimed to explore the complex regulatory mechanism of circRNA/miRNA/mRNA axis in pBOO. The pBOO rat model was established, and the bladder tissues were collected for mRNA sequencing. The differentially expressed mRNAs were analyzed by high-throughput sequencing, and the GO and KEGG analysis of the differentially expressed mRNAs were performed. Competing endogenous RNAs (ceRNAs) analysis identified the potential regulation function of circRNA/miRNA/mRNA axis in pBOO. qRT-PCR detected the expression of circRNA/miRNA/mRNA. miRanda software was performed to predict the relationship between circRNA and miRNA, miRNA and mRNA. Compared with the sham group, a total of 571 mRNAs were differentially expressed in the pBOO group, of which 286 were up-regulated and 285 were down-regulated. GO analysis showed that the mRNAs were mainly involved in cellular process, single-organism process, and cell, etc. KEGG analysis showed that the enriched signaling pathways were metabolic pathways, cell adhesion molecules (CAMs), and HTLV-I infection, etc. Based on the previous transcriptome data and differentially expressed circRNAs, we drew the ceRNA network regulation diagram. qRT-PCR results confirmed that chr3:113195876|113197193/rno-miR-30c-1-3p/Gata4, chr1:126188351|126195625/rno-miR-153-5p/Diaph3, and chr9:81258380|81275269/rno-miR-135b-5p/Pigr axis may have ceRNA function. miRanda confirmed there have the binding sites of circRNA/miRNA/mRNA axis. CircRNA/miRNA/mRNA axis was involved in the progression of pBOO. Our research on the circRNA/miRNA/mRNA axis revealed new pathogenesis and treatment strategies for pBOO.
ISSN:1471-2490
1471-2490
DOI:10.1186/s12894-022-01132-2