Loading…

Effects of Voids on Concrete Tensile Fracturing: A Mesoscale Study

A two-dimensional mesoscale modeling framework, which considers concrete as a four-phase material including voids, is developed for studying the effects of voids on concrete tensile fracturing under the plane stress condition. Aggregate is assumed to behave elastically, while a continuum damaged pla...

Full description

Saved in:
Bibliographic Details
Published in:Advances in materials science and engineering 2017-01, Vol.2017 (2017), p.1-14
Main Authors: Lei, Xu, Huang, Yefei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A two-dimensional mesoscale modeling framework, which considers concrete as a four-phase material including voids, is developed for studying the effects of voids on concrete tensile fracturing under the plane stress condition. Aggregate is assumed to behave elastically, while a continuum damaged plasticity model is employed to describe the mechanical behaviors of mortar and ITZ. The effects of voids on the fracture mechanism of concrete under uniaxial tension are first detailed, followed by an extensive investigation of the effects of void volume fraction on concrete tensile fracturing. It is found that both the prepeak and postpeak mesoscale cracking in concrete are highly affected by voids, and there is not a straightforward relation between void volume fraction and the postpeak behavior due to the randomness of void distribution. The fracture pattern of concrete specimen with voids is controlled by both the aggregate arrangement and the distribution of voids, and two types of failure modes are identified for concrete specimens under uniaxial tension. It is suggested that voids should be explicitly modeled for the accurate fracturing simulation of concrete on the mesoscale.
ISSN:1687-8434
1687-8442
DOI:10.1155/2017/7989346