Loading…
Effect of Cycling Low Velocity Impact on Mechanical and Wear Properties of CFRP Laminate Composites
The mechanical and wear properties of CFRP laminate were investigated using a method of cycling low velocity impact, to study the trend and mechanism of impact resistance of the CFRP laminate under repeated impact during its service process. The interface responses of CFRP laminate under different i...
Saved in:
Published in: | Chinese journal of mechanical engineering 2018-12, Vol.31 (1), p.1-10, Article 112 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanical and wear properties of CFRP laminate were investigated using a method of cycling low velocity impact, to study the trend and mechanism of impact resistance of the CFRP laminate under repeated impact during its service process. The interface responses of CFRP laminate under different impact kinetic energy during the cycling impact process were studied were studied experimentally, such as impact contact duration, deformation and energy absorption. The worn surface morphologies were observed through optical microscopy and a 3-D surface profiler and the cross-sectional morphologies were observed through SEM to investigate the mechanism of impact material damage. Based on a single-degree-of-freedom damping vibration model, the normal contact stiffness and contact damping of the material in different wear stages were calculated. It shows the failure process of CFRP laminate damaged by accumulated absorption energy under the cycling impact of different initial kinetic energy. The results indicate that the stiffness and damping coefficients will change at different impact velocities or cycle numbers. The damage mechanism of CFRP laminates under cycling low kinetic energy is delamination. After repeated experiments, it was found that there was a threshold value for the accumulated absorption energy before the failure of the CFRP laminate. |
---|---|
ISSN: | 1000-9345 2192-8258 |
DOI: | 10.1186/s10033-018-0305-7 |