Loading…

Resonant Adaptive MEMS Mirror

A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs...

Full description

Saved in:
Bibliographic Details
Published in:Actuators 2022-08, Vol.11 (8), p.224
Main Authors: Kamel, Amr, Kocer, Samed, Mukhangaliyeva, Lyazzat, Saritas, Resul, Gulsaran, Ahmet, Elhady, Alaa, Basha, Mohamed, Hajireza, Parsin, Yavuz, Mustafa, Abdel-Rahman, Eihab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3
cites cdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3
container_end_page
container_issue 8
container_start_page 224
container_title Actuators
container_volume 11
creator Kamel, Amr
Kocer, Samed
Mukhangaliyeva, Lyazzat
Saritas, Resul
Gulsaran, Ahmet
Elhady, Alaa
Basha, Mohamed
Hajireza, Parsin
Yavuz, Mustafa
Abdel-Rahman, Eihab
description A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes.
doi_str_mv 10.3390/act11080224
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a174aceab5524849b15a958369913d6f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745961510</galeid><doaj_id>oai_doaj_org_article_a174aceab5524849b15a958369913d6f</doaj_id><sourcerecordid>A745961510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</originalsourceid><addsrcrecordid>eNpNUEtLAzEQDqJgqT15FgoeZevkvXsspWqhRfBxDrNJtqS0m5rdCv57oxXpDMwMw_d98yDkmsKE8wru0faUQgmMiTMyYKBVASWT5yf1JRl13QayVZSXwAfk5sV3scW2H08d7vvw6cer-ep1vAopxXRFLhrcdn70l4fk_WH-Nnsqls-Pi9l0WVjOeV9IKqW0rgGmnHZCOW-pYxXVtbYKpM2zuOBCeIa-bEqlvINagKDIMtp7PiSLo66LuDH7FHaYvkzEYH4bMa0Npj7YrTdItUDrsZaSiVJUNZVYyZKrKp_kVJO1bo9a-xQ_Dr7rzSYeUpvXN0yDghxAZ9TkiFpjFg1tE_uENrvzu2Bj65uQ-1MtZKWopJAJd0eCTbHrkm_-16Rgfv5vTv7PvwHuI3NW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706027007</pqid></control><display><type>article</type><title>Resonant Adaptive MEMS Mirror</title><source>Publicly Available Content Database</source><creator>Kamel, Amr ; Kocer, Samed ; Mukhangaliyeva, Lyazzat ; Saritas, Resul ; Gulsaran, Ahmet ; Elhady, Alaa ; Basha, Mohamed ; Hajireza, Parsin ; Yavuz, Mustafa ; Abdel-Rahman, Eihab</creator><creatorcontrib>Kamel, Amr ; Kocer, Samed ; Mukhangaliyeva, Lyazzat ; Saritas, Resul ; Gulsaran, Ahmet ; Elhady, Alaa ; Basha, Mohamed ; Hajireza, Parsin ; Yavuz, Mustafa ; Abdel-Rahman, Eihab</creatorcontrib><description>A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act11080224</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuation ; Algorithms ; Circular plates ; Coma ; Deformable mirrors ; Electrodes ; Formability ; Lasers ; Microelectromechanical systems ; Micromachining ; Microscopy ; Modal analysis ; Ophthalmology ; resonant electrostatic actuation ; Resonant frequencies ; Springs (elastic) ; wavefront aberration ; Zernike modes</subject><ispartof>Actuators, 2022-08, Vol.11 (8), p.224</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</citedby><cites>FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</cites><orcidid>0000-0002-3709-7593 ; 0000-0002-0725-1991 ; 0000-0002-4928-6244 ; 0000-0002-6963-8462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706027007/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706027007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kamel, Amr</creatorcontrib><creatorcontrib>Kocer, Samed</creatorcontrib><creatorcontrib>Mukhangaliyeva, Lyazzat</creatorcontrib><creatorcontrib>Saritas, Resul</creatorcontrib><creatorcontrib>Gulsaran, Ahmet</creatorcontrib><creatorcontrib>Elhady, Alaa</creatorcontrib><creatorcontrib>Basha, Mohamed</creatorcontrib><creatorcontrib>Hajireza, Parsin</creatorcontrib><creatorcontrib>Yavuz, Mustafa</creatorcontrib><creatorcontrib>Abdel-Rahman, Eihab</creatorcontrib><title>Resonant Adaptive MEMS Mirror</title><title>Actuators</title><description>A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes.</description><subject>Actuation</subject><subject>Algorithms</subject><subject>Circular plates</subject><subject>Coma</subject><subject>Deformable mirrors</subject><subject>Electrodes</subject><subject>Formability</subject><subject>Lasers</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Microscopy</subject><subject>Modal analysis</subject><subject>Ophthalmology</subject><subject>resonant electrostatic actuation</subject><subject>Resonant frequencies</subject><subject>Springs (elastic)</subject><subject>wavefront aberration</subject><subject>Zernike modes</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEtLAzEQDqJgqT15FgoeZevkvXsspWqhRfBxDrNJtqS0m5rdCv57oxXpDMwMw_d98yDkmsKE8wru0faUQgmMiTMyYKBVASWT5yf1JRl13QayVZSXwAfk5sV3scW2H08d7vvw6cer-ep1vAopxXRFLhrcdn70l4fk_WH-Nnsqls-Pi9l0WVjOeV9IKqW0rgGmnHZCOW-pYxXVtbYKpM2zuOBCeIa-bEqlvINagKDIMtp7PiSLo66LuDH7FHaYvkzEYH4bMa0Npj7YrTdItUDrsZaSiVJUNZVYyZKrKp_kVJO1bo9a-xQ_Dr7rzSYeUpvXN0yDghxAZ9TkiFpjFg1tE_uENrvzu2Bj65uQ-1MtZKWopJAJd0eCTbHrkm_-16Rgfv5vTv7PvwHuI3NW</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kamel, Amr</creator><creator>Kocer, Samed</creator><creator>Mukhangaliyeva, Lyazzat</creator><creator>Saritas, Resul</creator><creator>Gulsaran, Ahmet</creator><creator>Elhady, Alaa</creator><creator>Basha, Mohamed</creator><creator>Hajireza, Parsin</creator><creator>Yavuz, Mustafa</creator><creator>Abdel-Rahman, Eihab</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3709-7593</orcidid><orcidid>https://orcid.org/0000-0002-0725-1991</orcidid><orcidid>https://orcid.org/0000-0002-4928-6244</orcidid><orcidid>https://orcid.org/0000-0002-6963-8462</orcidid></search><sort><creationdate>20220801</creationdate><title>Resonant Adaptive MEMS Mirror</title><author>Kamel, Amr ; Kocer, Samed ; Mukhangaliyeva, Lyazzat ; Saritas, Resul ; Gulsaran, Ahmet ; Elhady, Alaa ; Basha, Mohamed ; Hajireza, Parsin ; Yavuz, Mustafa ; Abdel-Rahman, Eihab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>Circular plates</topic><topic>Coma</topic><topic>Deformable mirrors</topic><topic>Electrodes</topic><topic>Formability</topic><topic>Lasers</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Microscopy</topic><topic>Modal analysis</topic><topic>Ophthalmology</topic><topic>resonant electrostatic actuation</topic><topic>Resonant frequencies</topic><topic>Springs (elastic)</topic><topic>wavefront aberration</topic><topic>Zernike modes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamel, Amr</creatorcontrib><creatorcontrib>Kocer, Samed</creatorcontrib><creatorcontrib>Mukhangaliyeva, Lyazzat</creatorcontrib><creatorcontrib>Saritas, Resul</creatorcontrib><creatorcontrib>Gulsaran, Ahmet</creatorcontrib><creatorcontrib>Elhady, Alaa</creatorcontrib><creatorcontrib>Basha, Mohamed</creatorcontrib><creatorcontrib>Hajireza, Parsin</creatorcontrib><creatorcontrib>Yavuz, Mustafa</creatorcontrib><creatorcontrib>Abdel-Rahman, Eihab</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamel, Amr</au><au>Kocer, Samed</au><au>Mukhangaliyeva, Lyazzat</au><au>Saritas, Resul</au><au>Gulsaran, Ahmet</au><au>Elhady, Alaa</au><au>Basha, Mohamed</au><au>Hajireza, Parsin</au><au>Yavuz, Mustafa</au><au>Abdel-Rahman, Eihab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant Adaptive MEMS Mirror</atitle><jtitle>Actuators</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>8</issue><spage>224</spage><pages>224-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act11080224</doi><orcidid>https://orcid.org/0000-0002-3709-7593</orcidid><orcidid>https://orcid.org/0000-0002-0725-1991</orcidid><orcidid>https://orcid.org/0000-0002-4928-6244</orcidid><orcidid>https://orcid.org/0000-0002-6963-8462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-0825
ispartof Actuators, 2022-08, Vol.11 (8), p.224
issn 2076-0825
2076-0825
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a174aceab5524849b15a958369913d6f
source Publicly Available Content Database
subjects Actuation
Algorithms
Circular plates
Coma
Deformable mirrors
Electrodes
Formability
Lasers
Microelectromechanical systems
Micromachining
Microscopy
Modal analysis
Ophthalmology
resonant electrostatic actuation
Resonant frequencies
Springs (elastic)
wavefront aberration
Zernike modes
title Resonant Adaptive MEMS Mirror
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20Adaptive%20MEMS%20Mirror&rft.jtitle=Actuators&rft.au=Kamel,%20Amr&rft.date=2022-08-01&rft.volume=11&rft.issue=8&rft.spage=224&rft.pages=224-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act11080224&rft_dat=%3Cgale_doaj_%3EA745961510%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706027007&rft_id=info:pmid/&rft_galeid=A745961510&rfr_iscdi=true