Loading…
Resonant Adaptive MEMS Mirror
A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs...
Saved in:
Published in: | Actuators 2022-08, Vol.11 (8), p.224 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3 |
container_end_page | |
container_issue | 8 |
container_start_page | 224 |
container_title | Actuators |
container_volume | 11 |
creator | Kamel, Amr Kocer, Samed Mukhangaliyeva, Lyazzat Saritas, Resul Gulsaran, Ahmet Elhady, Alaa Basha, Mohamed Hajireza, Parsin Yavuz, Mustafa Abdel-Rahman, Eihab |
description | A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes. |
doi_str_mv | 10.3390/act11080224 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a174aceab5524849b15a958369913d6f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745961510</galeid><doaj_id>oai_doaj_org_article_a174aceab5524849b15a958369913d6f</doaj_id><sourcerecordid>A745961510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</originalsourceid><addsrcrecordid>eNpNUEtLAzEQDqJgqT15FgoeZevkvXsspWqhRfBxDrNJtqS0m5rdCv57oxXpDMwMw_d98yDkmsKE8wru0faUQgmMiTMyYKBVASWT5yf1JRl13QayVZSXwAfk5sV3scW2H08d7vvw6cer-ep1vAopxXRFLhrcdn70l4fk_WH-Nnsqls-Pi9l0WVjOeV9IKqW0rgGmnHZCOW-pYxXVtbYKpM2zuOBCeIa-bEqlvINagKDIMtp7PiSLo66LuDH7FHaYvkzEYH4bMa0Npj7YrTdItUDrsZaSiVJUNZVYyZKrKp_kVJO1bo9a-xQ_Dr7rzSYeUpvXN0yDghxAZ9TkiFpjFg1tE_uENrvzu2Bj65uQ-1MtZKWopJAJd0eCTbHrkm_-16Rgfv5vTv7PvwHuI3NW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706027007</pqid></control><display><type>article</type><title>Resonant Adaptive MEMS Mirror</title><source>Publicly Available Content Database</source><creator>Kamel, Amr ; Kocer, Samed ; Mukhangaliyeva, Lyazzat ; Saritas, Resul ; Gulsaran, Ahmet ; Elhady, Alaa ; Basha, Mohamed ; Hajireza, Parsin ; Yavuz, Mustafa ; Abdel-Rahman, Eihab</creator><creatorcontrib>Kamel, Amr ; Kocer, Samed ; Mukhangaliyeva, Lyazzat ; Saritas, Resul ; Gulsaran, Ahmet ; Elhady, Alaa ; Basha, Mohamed ; Hajireza, Parsin ; Yavuz, Mustafa ; Abdel-Rahman, Eihab</creatorcontrib><description>A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act11080224</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Actuation ; Algorithms ; Circular plates ; Coma ; Deformable mirrors ; Electrodes ; Formability ; Lasers ; Microelectromechanical systems ; Micromachining ; Microscopy ; Modal analysis ; Ophthalmology ; resonant electrostatic actuation ; Resonant frequencies ; Springs (elastic) ; wavefront aberration ; Zernike modes</subject><ispartof>Actuators, 2022-08, Vol.11 (8), p.224</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</citedby><cites>FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</cites><orcidid>0000-0002-3709-7593 ; 0000-0002-0725-1991 ; 0000-0002-4928-6244 ; 0000-0002-6963-8462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706027007/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706027007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kamel, Amr</creatorcontrib><creatorcontrib>Kocer, Samed</creatorcontrib><creatorcontrib>Mukhangaliyeva, Lyazzat</creatorcontrib><creatorcontrib>Saritas, Resul</creatorcontrib><creatorcontrib>Gulsaran, Ahmet</creatorcontrib><creatorcontrib>Elhady, Alaa</creatorcontrib><creatorcontrib>Basha, Mohamed</creatorcontrib><creatorcontrib>Hajireza, Parsin</creatorcontrib><creatorcontrib>Yavuz, Mustafa</creatorcontrib><creatorcontrib>Abdel-Rahman, Eihab</creatorcontrib><title>Resonant Adaptive MEMS Mirror</title><title>Actuators</title><description>A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes.</description><subject>Actuation</subject><subject>Algorithms</subject><subject>Circular plates</subject><subject>Coma</subject><subject>Deformable mirrors</subject><subject>Electrodes</subject><subject>Formability</subject><subject>Lasers</subject><subject>Microelectromechanical systems</subject><subject>Micromachining</subject><subject>Microscopy</subject><subject>Modal analysis</subject><subject>Ophthalmology</subject><subject>resonant electrostatic actuation</subject><subject>Resonant frequencies</subject><subject>Springs (elastic)</subject><subject>wavefront aberration</subject><subject>Zernike modes</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEtLAzEQDqJgqT15FgoeZevkvXsspWqhRfBxDrNJtqS0m5rdCv57oxXpDMwMw_d98yDkmsKE8wru0faUQgmMiTMyYKBVASWT5yf1JRl13QayVZSXwAfk5sV3scW2H08d7vvw6cer-ep1vAopxXRFLhrcdn70l4fk_WH-Nnsqls-Pi9l0WVjOeV9IKqW0rgGmnHZCOW-pYxXVtbYKpM2zuOBCeIa-bEqlvINagKDIMtp7PiSLo66LuDH7FHaYvkzEYH4bMa0Npj7YrTdItUDrsZaSiVJUNZVYyZKrKp_kVJO1bo9a-xQ_Dr7rzSYeUpvXN0yDghxAZ9TkiFpjFg1tE_uENrvzu2Bj65uQ-1MtZKWopJAJd0eCTbHrkm_-16Rgfv5vTv7PvwHuI3NW</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Kamel, Amr</creator><creator>Kocer, Samed</creator><creator>Mukhangaliyeva, Lyazzat</creator><creator>Saritas, Resul</creator><creator>Gulsaran, Ahmet</creator><creator>Elhady, Alaa</creator><creator>Basha, Mohamed</creator><creator>Hajireza, Parsin</creator><creator>Yavuz, Mustafa</creator><creator>Abdel-Rahman, Eihab</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3709-7593</orcidid><orcidid>https://orcid.org/0000-0002-0725-1991</orcidid><orcidid>https://orcid.org/0000-0002-4928-6244</orcidid><orcidid>https://orcid.org/0000-0002-6963-8462</orcidid></search><sort><creationdate>20220801</creationdate><title>Resonant Adaptive MEMS Mirror</title><author>Kamel, Amr ; Kocer, Samed ; Mukhangaliyeva, Lyazzat ; Saritas, Resul ; Gulsaran, Ahmet ; Elhady, Alaa ; Basha, Mohamed ; Hajireza, Parsin ; Yavuz, Mustafa ; Abdel-Rahman, Eihab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actuation</topic><topic>Algorithms</topic><topic>Circular plates</topic><topic>Coma</topic><topic>Deformable mirrors</topic><topic>Electrodes</topic><topic>Formability</topic><topic>Lasers</topic><topic>Microelectromechanical systems</topic><topic>Micromachining</topic><topic>Microscopy</topic><topic>Modal analysis</topic><topic>Ophthalmology</topic><topic>resonant electrostatic actuation</topic><topic>Resonant frequencies</topic><topic>Springs (elastic)</topic><topic>wavefront aberration</topic><topic>Zernike modes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamel, Amr</creatorcontrib><creatorcontrib>Kocer, Samed</creatorcontrib><creatorcontrib>Mukhangaliyeva, Lyazzat</creatorcontrib><creatorcontrib>Saritas, Resul</creatorcontrib><creatorcontrib>Gulsaran, Ahmet</creatorcontrib><creatorcontrib>Elhady, Alaa</creatorcontrib><creatorcontrib>Basha, Mohamed</creatorcontrib><creatorcontrib>Hajireza, Parsin</creatorcontrib><creatorcontrib>Yavuz, Mustafa</creatorcontrib><creatorcontrib>Abdel-Rahman, Eihab</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamel, Amr</au><au>Kocer, Samed</au><au>Mukhangaliyeva, Lyazzat</au><au>Saritas, Resul</au><au>Gulsaran, Ahmet</au><au>Elhady, Alaa</au><au>Basha, Mohamed</au><au>Hajireza, Parsin</au><au>Yavuz, Mustafa</au><au>Abdel-Rahman, Eihab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant Adaptive MEMS Mirror</atitle><jtitle>Actuators</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>8</issue><spage>224</spage><pages>224-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>A novel MEMS continuous deformable mirror (DM) is presented. The mirror can be integrated into optical systems to compensate for monochromatic and chromatic aberrations. It is comprised of a 1.6 mm circular plate supported by eight evenly spaced flexural springs. Unlike traditional bias actuated DMs, it uses resonant electrostatic actuation (REA) to realize low- and high-order Zernike modes with a single drive signal. Instead of the hundreds or thousands of electrodes deployed by traditional DMs, the proposed DM employs only 49 electrodes and eliminates the need for spatial control algorithms and associated hardware, thereby providing a compact low-cost alternative. It also exploits dynamic amplification to reduce power requirements and increase the stroke by driving the DM at resonance. The DM was fabricated using a commercial silicon-on-insulator (SOI) MEMS process. Experimental modal analysis was carried out using laser Doppler vibrometry (LDV) to identify mode shapes of the DM and their natural frequencies. We are able to observe all of the lowest eight Zernike modes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act11080224</doi><orcidid>https://orcid.org/0000-0002-3709-7593</orcidid><orcidid>https://orcid.org/0000-0002-0725-1991</orcidid><orcidid>https://orcid.org/0000-0002-4928-6244</orcidid><orcidid>https://orcid.org/0000-0002-6963-8462</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-0825 |
ispartof | Actuators, 2022-08, Vol.11 (8), p.224 |
issn | 2076-0825 2076-0825 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a174aceab5524849b15a958369913d6f |
source | Publicly Available Content Database |
subjects | Actuation Algorithms Circular plates Coma Deformable mirrors Electrodes Formability Lasers Microelectromechanical systems Micromachining Microscopy Modal analysis Ophthalmology resonant electrostatic actuation Resonant frequencies Springs (elastic) wavefront aberration Zernike modes |
title | Resonant Adaptive MEMS Mirror |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20Adaptive%20MEMS%20Mirror&rft.jtitle=Actuators&rft.au=Kamel,%20Amr&rft.date=2022-08-01&rft.volume=11&rft.issue=8&rft.spage=224&rft.pages=224-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act11080224&rft_dat=%3Cgale_doaj_%3EA745961510%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-51555cdf026d7d46dec1d2917b7c605c13834344e2ae8f866ed0b4041a2d46ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706027007&rft_id=info:pmid/&rft_galeid=A745961510&rfr_iscdi=true |