Loading…

Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer's disease

Retinal thickness can be measured non-invasively with optical coherence tomography (OCT) and may offer compelling potential as a biomarker for Alzheimer's disease (AD). Retinal thinning is hypothesized to be a result of retrograde atrophy and/or parallel neurodegenerative processes. Changes in...

Full description

Saved in:
Bibliographic Details
Published in:Alzheimer's research & therapy 2019-07, Vol.11 (1), p.62-9, Article 62
Main Authors: den Haan, Jurre, Csinscik, Lajos, Parker, Tom, Paterson, Ross W, Slattery, Catherine F, Foulkes, Alexander, Bouwman, Femke H, Verbraak, Frank D, Scheltens, Philip, Peto, Tunde, Lengyel, Imre, Schott, Jonathan M, Crutch, Sebastian J, Shakespeare, Timothy J, Yong, Keir X X
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Retinal thickness can be measured non-invasively with optical coherence tomography (OCT) and may offer compelling potential as a biomarker for Alzheimer's disease (AD). Retinal thinning is hypothesized to be a result of retrograde atrophy and/or parallel neurodegenerative processes. Changes in the visual pathway are of particular interest in posterior cortical atrophy (PCA), the most common atypical AD phenotype predominantly affecting the parietal-occipital cortices. We therefore evaluated retinal thickness as non-invasive biomarker of neurodegeneration in well-characterized participants with posterior cortical atrophy (PCA) and typical Alzheimer's disease (tAD). Retinal thickness measures were acquired from 48 patient participants (N = 25 PCA; N = 23 tAD) fulfilling consensus diagnostic criteria and 70 age-matched controls. Participants were recruited between 2014 and 2016. All participants underwent optical coherence tomography (OCT) imaging, including measurement of peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular thickness (mRT). Participants did not show evidence of any significant ophthalmological conditions. Subgroup analyses were performed in participants with available MRI and CSF measures, providing evidence of neurodegeneration and underlying AD pathology respectively. There was no evidence of overall between-group differences in pRNFL thickness (mean PCA 98.7 ± 12.2; tAD 99.9 ± 8.7; controls 99.6 ± 10.0 μm, one-way analysis of variance (ANOVA) p = 0.92) or total mRT (mean PCA 266.9 ± 16.3; tAD 267.8 ± 13.6; controls 269.3 ± 13.6 μm, one-way ANOVA p = 0.75). Similarly, subgroup analysis with MRI biomarkers (PCA = 18, tAD = 17, controls = 31) showing neurodegeneration, and CSF biomarkers (PCA = 18, tAD = 14, controls = 13) supporting underlying AD pathology did not provide evidence of overall between-group differences in pRNFL or mRT measures (all p > 0.3). Retinal thickness did not discriminate tAD and PCA from controls or from one another despite unequivocal differences on standard clinical, neuro-imaging and CSF measures. Findings from this well-characterized sample, including cases with PCA, do not support the hypothesis that retinal neurodegeneration, measured using conventional OCT, is a useful biomarker for AD or PCA.
ISSN:1758-9193
1758-9193
DOI:10.1186/s13195-019-0516-x