Loading…

Fisher information of correlated stochastic processes

Many real-world tasks include some kind of parameter estimation, i.e. the determination of a parameter encoded in a probability distribution. Often, such probability distributions arise from stochastic processes. For a stationary stochastic process with temporal correlations, the random variables th...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2023-05, Vol.25 (5), p.53037
Main Authors: Radaelli, Marco, Landi, Gabriel T, Modi, Kavan, Binder, Felix C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-1290c3f9969ac06cefaa9f19c2e66f91fe6a0f7e3044784f0df4c78838aeafe13
cites cdi_FETCH-LOGICAL-c416t-1290c3f9969ac06cefaa9f19c2e66f91fe6a0f7e3044784f0df4c78838aeafe13
container_end_page
container_issue 5
container_start_page 53037
container_title New journal of physics
container_volume 25
creator Radaelli, Marco
Landi, Gabriel T
Modi, Kavan
Binder, Felix C
description Many real-world tasks include some kind of parameter estimation, i.e. the determination of a parameter encoded in a probability distribution. Often, such probability distributions arise from stochastic processes. For a stationary stochastic process with temporal correlations, the random variables that constitute it are identically distributed but not independent. This is the case, for instance, for quantum continuous measurements. In this article, we derive the asymptotic Fisher information rate for a stationary process with finite Markov order. We give a precise expression for this rate which is determined by the process’ conditional distribution up to its Markov order. Second, we demonstrate with suitable examples that correlations may both enhance or hamper the metrological precision. Indeed, unlike for entropic information quantities, in general nothing can be said about the sub- or super-additivity of the joint Fisher information in the presence of correlations. To illustrate our results, we apply them to thermometry on an Ising spin chain, considering nearest-neighbour and next-to-nearest neighbour coupling. In this case, the asymptotic Fisher information rate is directly connected to the specific heat capacity of the spin chain. We observe that the presence of correlations strongly enhances the estimation precision in an anti-ferromagnetic chain, while in a ferromagnetic chain this is not the case.
doi_str_mv 10.1088/1367-2630/acd321
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a1ad3981df7e4ff19de4d25bf619fb4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a1ad3981df7e4ff19de4d25bf619fb4b</doaj_id><sourcerecordid>2821682601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1290c3f9969ac06cefaa9f19c2e66f91fe6a0f7e3044784f0df4c78838aeafe13</originalsourceid><addsrcrecordid>eNp1kL1PAzEMxSMEEuVjZzyJlaP5ai4ZUUWhUiUWmCM3Z9Or2qYk14H_njsOFRYmW5b9e8-PsRvB7wW3diyUqUppFB9DqJUUJ2x0HJ3-6c_ZRc5rzoWwUo7YZNbkFaai2VFMW2ibuCsiFSGmhBtosS5yG8MKctuEYp9iwJwxX7Ezgk3G6596yd5mj6_T53Lx8jSfPizKoIVpSyEdD4qcMw4CNwEJwJFwQaIx5AShAU4VKq51ZTXxmnSorFUWEAiFumTzgVtHWPt9araQPn2Exn8PYnr3kDpnG_QgoFbOirrjaepEatS1nCzJCEdLvexYtwOr--LjgLn163hIu86-l1YKY6XhvSIftkKKOSeko6rgvg_a90n6Pkk_BN2d3A0nTdz_Mv9d_wI8-H7y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821682601</pqid></control><display><type>article</type><title>Fisher information of correlated stochastic processes</title><source>Publicly Available Content Database</source><creator>Radaelli, Marco ; Landi, Gabriel T ; Modi, Kavan ; Binder, Felix C</creator><creatorcontrib>Radaelli, Marco ; Landi, Gabriel T ; Modi, Kavan ; Binder, Felix C</creatorcontrib><description>Many real-world tasks include some kind of parameter estimation, i.e. the determination of a parameter encoded in a probability distribution. Often, such probability distributions arise from stochastic processes. For a stationary stochastic process with temporal correlations, the random variables that constitute it are identically distributed but not independent. This is the case, for instance, for quantum continuous measurements. In this article, we derive the asymptotic Fisher information rate for a stationary process with finite Markov order. We give a precise expression for this rate which is determined by the process’ conditional distribution up to its Markov order. Second, we demonstrate with suitable examples that correlations may both enhance or hamper the metrological precision. Indeed, unlike for entropic information quantities, in general nothing can be said about the sub- or super-additivity of the joint Fisher information in the presence of correlations. To illustrate our results, we apply them to thermometry on an Ising spin chain, considering nearest-neighbour and next-to-nearest neighbour coupling. In this case, the asymptotic Fisher information rate is directly connected to the specific heat capacity of the spin chain. We observe that the presence of correlations strongly enhances the estimation precision in an anti-ferromagnetic chain, while in a ferromagnetic chain this is not the case.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/acd321</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic methods ; Asymptotic properties ; Correlation ; Ferromagnetism ; Fisher information ; information theory ; Ising model ; metrology ; Parameter estimation ; Physics ; Probability theory ; Random variables ; spin chains ; Stationary processes ; Stochastic models ; Stochastic processes</subject><ispartof>New journal of physics, 2023-05, Vol.25 (5), p.53037</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1290c3f9969ac06cefaa9f19c2e66f91fe6a0f7e3044784f0df4c78838aeafe13</citedby><cites>FETCH-LOGICAL-c416t-1290c3f9969ac06cefaa9f19c2e66f91fe6a0f7e3044784f0df4c78838aeafe13</cites><orcidid>0000-0001-8451-9712 ; 0000-0002-9210-5779 ; 0000-0002-2054-9901 ; 0000-0003-4483-5643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2821682601?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Radaelli, Marco</creatorcontrib><creatorcontrib>Landi, Gabriel T</creatorcontrib><creatorcontrib>Modi, Kavan</creatorcontrib><creatorcontrib>Binder, Felix C</creatorcontrib><title>Fisher information of correlated stochastic processes</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Many real-world tasks include some kind of parameter estimation, i.e. the determination of a parameter encoded in a probability distribution. Often, such probability distributions arise from stochastic processes. For a stationary stochastic process with temporal correlations, the random variables that constitute it are identically distributed but not independent. This is the case, for instance, for quantum continuous measurements. In this article, we derive the asymptotic Fisher information rate for a stationary process with finite Markov order. We give a precise expression for this rate which is determined by the process’ conditional distribution up to its Markov order. Second, we demonstrate with suitable examples that correlations may both enhance or hamper the metrological precision. Indeed, unlike for entropic information quantities, in general nothing can be said about the sub- or super-additivity of the joint Fisher information in the presence of correlations. To illustrate our results, we apply them to thermometry on an Ising spin chain, considering nearest-neighbour and next-to-nearest neighbour coupling. In this case, the asymptotic Fisher information rate is directly connected to the specific heat capacity of the spin chain. We observe that the presence of correlations strongly enhances the estimation precision in an anti-ferromagnetic chain, while in a ferromagnetic chain this is not the case.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Correlation</subject><subject>Ferromagnetism</subject><subject>Fisher information</subject><subject>information theory</subject><subject>Ising model</subject><subject>metrology</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>spin chains</subject><subject>Stationary processes</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kL1PAzEMxSMEEuVjZzyJlaP5ai4ZUUWhUiUWmCM3Z9Or2qYk14H_njsOFRYmW5b9e8-PsRvB7wW3diyUqUppFB9DqJUUJ2x0HJ3-6c_ZRc5rzoWwUo7YZNbkFaai2VFMW2ibuCsiFSGmhBtosS5yG8MKctuEYp9iwJwxX7Ezgk3G6596yd5mj6_T53Lx8jSfPizKoIVpSyEdD4qcMw4CNwEJwJFwQaIx5AShAU4VKq51ZTXxmnSorFUWEAiFumTzgVtHWPt9araQPn2Exn8PYnr3kDpnG_QgoFbOirrjaepEatS1nCzJCEdLvexYtwOr--LjgLn163hIu86-l1YKY6XhvSIftkKKOSeko6rgvg_a90n6Pkk_BN2d3A0nTdz_Mv9d_wI8-H7y</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Radaelli, Marco</creator><creator>Landi, Gabriel T</creator><creator>Modi, Kavan</creator><creator>Binder, Felix C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8451-9712</orcidid><orcidid>https://orcid.org/0000-0002-9210-5779</orcidid><orcidid>https://orcid.org/0000-0002-2054-9901</orcidid><orcidid>https://orcid.org/0000-0003-4483-5643</orcidid></search><sort><creationdate>20230501</creationdate><title>Fisher information of correlated stochastic processes</title><author>Radaelli, Marco ; Landi, Gabriel T ; Modi, Kavan ; Binder, Felix C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1290c3f9969ac06cefaa9f19c2e66f91fe6a0f7e3044784f0df4c78838aeafe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Correlation</topic><topic>Ferromagnetism</topic><topic>Fisher information</topic><topic>information theory</topic><topic>Ising model</topic><topic>metrology</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>spin chains</topic><topic>Stationary processes</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radaelli, Marco</creatorcontrib><creatorcontrib>Landi, Gabriel T</creatorcontrib><creatorcontrib>Modi, Kavan</creatorcontrib><creatorcontrib>Binder, Felix C</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radaelli, Marco</au><au>Landi, Gabriel T</au><au>Modi, Kavan</au><au>Binder, Felix C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fisher information of correlated stochastic processes</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>25</volume><issue>5</issue><spage>53037</spage><pages>53037-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Many real-world tasks include some kind of parameter estimation, i.e. the determination of a parameter encoded in a probability distribution. Often, such probability distributions arise from stochastic processes. For a stationary stochastic process with temporal correlations, the random variables that constitute it are identically distributed but not independent. This is the case, for instance, for quantum continuous measurements. In this article, we derive the asymptotic Fisher information rate for a stationary process with finite Markov order. We give a precise expression for this rate which is determined by the process’ conditional distribution up to its Markov order. Second, we demonstrate with suitable examples that correlations may both enhance or hamper the metrological precision. Indeed, unlike for entropic information quantities, in general nothing can be said about the sub- or super-additivity of the joint Fisher information in the presence of correlations. To illustrate our results, we apply them to thermometry on an Ising spin chain, considering nearest-neighbour and next-to-nearest neighbour coupling. In this case, the asymptotic Fisher information rate is directly connected to the specific heat capacity of the spin chain. We observe that the presence of correlations strongly enhances the estimation precision in an anti-ferromagnetic chain, while in a ferromagnetic chain this is not the case.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/acd321</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8451-9712</orcidid><orcidid>https://orcid.org/0000-0002-9210-5779</orcidid><orcidid>https://orcid.org/0000-0002-2054-9901</orcidid><orcidid>https://orcid.org/0000-0003-4483-5643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2023-05, Vol.25 (5), p.53037
issn 1367-2630
1367-2630
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a1ad3981df7e4ff19de4d25bf619fb4b
source Publicly Available Content Database
subjects Asymptotic methods
Asymptotic properties
Correlation
Ferromagnetism
Fisher information
information theory
Ising model
metrology
Parameter estimation
Physics
Probability theory
Random variables
spin chains
Stationary processes
Stochastic models
Stochastic processes
title Fisher information of correlated stochastic processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fisher%20information%20of%20correlated%20stochastic%20processes&rft.jtitle=New%20journal%20of%20physics&rft.au=Radaelli,%20Marco&rft.date=2023-05-01&rft.volume=25&rft.issue=5&rft.spage=53037&rft.pages=53037-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/acd321&rft_dat=%3Cproquest_doaj_%3E2821682601%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-1290c3f9969ac06cefaa9f19c2e66f91fe6a0f7e3044784f0df4c78838aeafe13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821682601&rft_id=info:pmid/&rfr_iscdi=true