Loading…
"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites
Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m /g), however the fine porous geome...
Saved in:
Published in: | Membranes (Basel) 2021-03, Vol.11 (3), p.204 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393 |
---|---|
cites | cdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393 |
container_end_page | |
container_issue | 3 |
container_start_page | 204 |
container_title | Membranes (Basel) |
container_volume | 11 |
creator | Pylypchuk, Ievgen Selyanchyn, Roman Budnyak, Tetyana Zhao, Yadong Lindström, Mikael Fujikawa, Shigenori Sevastyanova, Olena |
description | Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m
/g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H
, CO
, N
, and O
through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10
cm
(STP) cm cm
s
cmHg
cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes. |
doi_str_mv | 10.3390/membranes11030204 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a1e572fce3dd4252972c3c9fcb84327c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a1e572fce3dd4252972c3c9fcb84327c</doaj_id><sourcerecordid>2502512627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</originalsourceid><addsrcrecordid>eNqFks1uEzEUhUcIRKvSB2CDrLJlwH8zHrNASkMpEeFnEWBpeTzXicPEDvYMFQ_C-2KStjRigTe2rr9zjn11i-Ixwc8Zk_jFBjZt1B4SIZhhivm94phiIUrMRHX_zvmoOE1pjfOqcVUz_LA4YqzBlaDyuPh1NomDs8443aOvIXRnaO6WPhjo-7EPyRn0_iboJZp524_gDaBg0buo7bCjnUfBo2EF6FMMW8iGkJD2HbrUCS2yNm1DHFDGFqN3Rg9QnusEHfqg_yYBmobNNicOkB4VD6zuE5xe7yfF5zcXi-nbcv7xcjadzEtTMz6UhtlOQAOVrhvGheTEWk7atpaAW85B5kpLpDF1LeqqoZxqW3W6tUaDwEyyk2K29-2CXqttdBsdf6qgndoVQlwqnX9jelCaQO6YNcC6jtOKSkENM9KatuGMCpO9nu290hVsx_bA7bX7Mtm5pVERyRpCMl7-H_82rBSVDDdV5l_t-QxvoDPgh6j7A9nhjXcrtQw_lJC5DZhng6fXBjF8HyENah3G6HN7Fa0wrQitqcgU2VMmhpQi2NsEgtWfuVP_zF3WPLn7tFvFzZSx35h62Ps</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502512627</pqid></control><display><type>article</type><title>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pylypchuk, Ievgen ; Selyanchyn, Roman ; Budnyak, Tetyana ; Zhao, Yadong ; Lindström, Mikael ; Fujikawa, Shigenori ; Sevastyanova, Olena</creator><creatorcontrib>Pylypchuk, Ievgen ; Selyanchyn, Roman ; Budnyak, Tetyana ; Zhao, Yadong ; Lindström, Mikael ; Fujikawa, Shigenori ; Sevastyanova, Olena</creatorcontrib><description>Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m
/g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H
, CO
, N
, and O
through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10
cm
(STP) cm cm
s
cmHg
cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes11030204</identifier><identifier>PMID: 33805729</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; biopolymer membrane ; Carbon dioxide ; Cellulose ; Cellulose acetate ; Cellulose fibers ; Composite materials ; Diffusion rate ; Fabrication ; gas separation ; Gas transport ; Gases ; Glass transition ; Lignin ; Lignocellulose ; Membranes ; Morphology ; nanocellulose ; nanocomposites ; Nanofibers ; Optimization ; Permeability ; Plants ; Polymers ; Separation processes ; Starch ; Tensile strength ; Thermal properties ; Thermal stability ; Thermodynamic properties</subject><ispartof>Membranes (Basel), 2021-03, Vol.11 (3), p.204</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</citedby><cites>FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</cites><orcidid>0000-0002-0846-2416 ; 0000-0001-5467-2839 ; 0000-0001-7433-0350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2502512627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2502512627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33805729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293085$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-193811$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pylypchuk, Ievgen</creatorcontrib><creatorcontrib>Selyanchyn, Roman</creatorcontrib><creatorcontrib>Budnyak, Tetyana</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Lindström, Mikael</creatorcontrib><creatorcontrib>Fujikawa, Shigenori</creatorcontrib><creatorcontrib>Sevastyanova, Olena</creatorcontrib><title>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</title><title>Membranes (Basel)</title><addtitle>Membranes (Basel)</addtitle><description>Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m
/g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H
, CO
, N
, and O
through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10
cm
(STP) cm cm
s
cmHg
cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.</description><subject>Adsorption</subject><subject>biopolymer membrane</subject><subject>Carbon dioxide</subject><subject>Cellulose</subject><subject>Cellulose acetate</subject><subject>Cellulose fibers</subject><subject>Composite materials</subject><subject>Diffusion rate</subject><subject>Fabrication</subject><subject>gas separation</subject><subject>Gas transport</subject><subject>Gases</subject><subject>Glass transition</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Membranes</subject><subject>Morphology</subject><subject>nanocellulose</subject><subject>nanocomposites</subject><subject>Nanofibers</subject><subject>Optimization</subject><subject>Permeability</subject><subject>Plants</subject><subject>Polymers</subject><subject>Separation processes</subject><subject>Starch</subject><subject>Tensile strength</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEUhUcIRKvSB2CDrLJlwH8zHrNASkMpEeFnEWBpeTzXicPEDvYMFQ_C-2KStjRigTe2rr9zjn11i-Ixwc8Zk_jFBjZt1B4SIZhhivm94phiIUrMRHX_zvmoOE1pjfOqcVUz_LA4YqzBlaDyuPh1NomDs8443aOvIXRnaO6WPhjo-7EPyRn0_iboJZp524_gDaBg0buo7bCjnUfBo2EF6FMMW8iGkJD2HbrUCS2yNm1DHFDGFqN3Rg9QnusEHfqg_yYBmobNNicOkB4VD6zuE5xe7yfF5zcXi-nbcv7xcjadzEtTMz6UhtlOQAOVrhvGheTEWk7atpaAW85B5kpLpDF1LeqqoZxqW3W6tUaDwEyyk2K29-2CXqttdBsdf6qgndoVQlwqnX9jelCaQO6YNcC6jtOKSkENM9KatuGMCpO9nu290hVsx_bA7bX7Mtm5pVERyRpCMl7-H_82rBSVDDdV5l_t-QxvoDPgh6j7A9nhjXcrtQw_lJC5DZhng6fXBjF8HyENah3G6HN7Fa0wrQitqcgU2VMmhpQi2NsEgtWfuVP_zF3WPLn7tFvFzZSx35h62Ps</recordid><startdate>20210313</startdate><enddate>20210313</enddate><creator>Pylypchuk, Ievgen</creator><creator>Selyanchyn, Roman</creator><creator>Budnyak, Tetyana</creator><creator>Zhao, Yadong</creator><creator>Lindström, Mikael</creator><creator>Fujikawa, Shigenori</creator><creator>Sevastyanova, Olena</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>ABAVF</scope><scope>DG7</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0846-2416</orcidid><orcidid>https://orcid.org/0000-0001-5467-2839</orcidid><orcidid>https://orcid.org/0000-0001-7433-0350</orcidid></search><sort><creationdate>20210313</creationdate><title>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</title><author>Pylypchuk, Ievgen ; Selyanchyn, Roman ; Budnyak, Tetyana ; Zhao, Yadong ; Lindström, Mikael ; Fujikawa, Shigenori ; Sevastyanova, Olena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>biopolymer membrane</topic><topic>Carbon dioxide</topic><topic>Cellulose</topic><topic>Cellulose acetate</topic><topic>Cellulose fibers</topic><topic>Composite materials</topic><topic>Diffusion rate</topic><topic>Fabrication</topic><topic>gas separation</topic><topic>Gas transport</topic><topic>Gases</topic><topic>Glass transition</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Membranes</topic><topic>Morphology</topic><topic>nanocellulose</topic><topic>nanocomposites</topic><topic>Nanofibers</topic><topic>Optimization</topic><topic>Permeability</topic><topic>Plants</topic><topic>Polymers</topic><topic>Separation processes</topic><topic>Starch</topic><topic>Tensile strength</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pylypchuk, Ievgen</creatorcontrib><creatorcontrib>Selyanchyn, Roman</creatorcontrib><creatorcontrib>Budnyak, Tetyana</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Lindström, Mikael</creatorcontrib><creatorcontrib>Fujikawa, Shigenori</creatorcontrib><creatorcontrib>Sevastyanova, Olena</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SWEPUB Stockholms universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pylypchuk, Ievgen</au><au>Selyanchyn, Roman</au><au>Budnyak, Tetyana</au><au>Zhao, Yadong</au><au>Lindström, Mikael</au><au>Fujikawa, Shigenori</au><au>Sevastyanova, Olena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</atitle><jtitle>Membranes (Basel)</jtitle><addtitle>Membranes (Basel)</addtitle><date>2021-03-13</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>204</spage><pages>204-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m
/g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H
, CO
, N
, and O
through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10
cm
(STP) cm cm
s
cmHg
cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33805729</pmid><doi>10.3390/membranes11030204</doi><orcidid>https://orcid.org/0000-0002-0846-2416</orcidid><orcidid>https://orcid.org/0000-0001-5467-2839</orcidid><orcidid>https://orcid.org/0000-0001-7433-0350</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes (Basel), 2021-03, Vol.11 (3), p.204 |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a1e572fce3dd4252972c3c9fcb84327c |
source | Publicly Available Content Database; PubMed Central |
subjects | Adsorption biopolymer membrane Carbon dioxide Cellulose Cellulose acetate Cellulose fibers Composite materials Diffusion rate Fabrication gas separation Gas transport Gases Glass transition Lignin Lignocellulose Membranes Morphology nanocellulose nanocomposites Nanofibers Optimization Permeability Plants Polymers Separation processes Starch Tensile strength Thermal properties Thermal stability Thermodynamic properties |
title | "Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%22Artificial%20Wood%22%20Lignocellulosic%20Membranes:%20Influence%20of%20Kraft%20Lignin%20on%20the%20Properties%20and%20Gas%20Transport%20in%20Tunicate-Based%20Nanocellulose%20Composites&rft.jtitle=Membranes%20(Basel)&rft.au=Pylypchuk,%20Ievgen&rft.date=2021-03-13&rft.volume=11&rft.issue=3&rft.spage=204&rft.pages=204-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes11030204&rft_dat=%3Cproquest_doaj_%3E2502512627%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502512627&rft_id=info:pmid/33805729&rfr_iscdi=true |