Loading…

"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites

Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m /g), however the fine porous geome...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2021-03, Vol.11 (3), p.204
Main Authors: Pylypchuk, Ievgen, Selyanchyn, Roman, Budnyak, Tetyana, Zhao, Yadong, Lindström, Mikael, Fujikawa, Shigenori, Sevastyanova, Olena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393
cites cdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393
container_end_page
container_issue 3
container_start_page 204
container_title Membranes (Basel)
container_volume 11
creator Pylypchuk, Ievgen
Selyanchyn, Roman
Budnyak, Tetyana
Zhao, Yadong
Lindström, Mikael
Fujikawa, Shigenori
Sevastyanova, Olena
description Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m /g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H , CO , N , and O through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10 cm (STP) cm cm s cmHg cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.
doi_str_mv 10.3390/membranes11030204
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a1e572fce3dd4252972c3c9fcb84327c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a1e572fce3dd4252972c3c9fcb84327c</doaj_id><sourcerecordid>2502512627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</originalsourceid><addsrcrecordid>eNqFks1uEzEUhUcIRKvSB2CDrLJlwH8zHrNASkMpEeFnEWBpeTzXicPEDvYMFQ_C-2KStjRigTe2rr9zjn11i-Ixwc8Zk_jFBjZt1B4SIZhhivm94phiIUrMRHX_zvmoOE1pjfOqcVUz_LA4YqzBlaDyuPh1NomDs8443aOvIXRnaO6WPhjo-7EPyRn0_iboJZp524_gDaBg0buo7bCjnUfBo2EF6FMMW8iGkJD2HbrUCS2yNm1DHFDGFqN3Rg9QnusEHfqg_yYBmobNNicOkB4VD6zuE5xe7yfF5zcXi-nbcv7xcjadzEtTMz6UhtlOQAOVrhvGheTEWk7atpaAW85B5kpLpDF1LeqqoZxqW3W6tUaDwEyyk2K29-2CXqttdBsdf6qgndoVQlwqnX9jelCaQO6YNcC6jtOKSkENM9KatuGMCpO9nu290hVsx_bA7bX7Mtm5pVERyRpCMl7-H_82rBSVDDdV5l_t-QxvoDPgh6j7A9nhjXcrtQw_lJC5DZhng6fXBjF8HyENah3G6HN7Fa0wrQitqcgU2VMmhpQi2NsEgtWfuVP_zF3WPLn7tFvFzZSx35h62Ps</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502512627</pqid></control><display><type>article</type><title>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pylypchuk, Ievgen ; Selyanchyn, Roman ; Budnyak, Tetyana ; Zhao, Yadong ; Lindström, Mikael ; Fujikawa, Shigenori ; Sevastyanova, Olena</creator><creatorcontrib>Pylypchuk, Ievgen ; Selyanchyn, Roman ; Budnyak, Tetyana ; Zhao, Yadong ; Lindström, Mikael ; Fujikawa, Shigenori ; Sevastyanova, Olena</creatorcontrib><description>Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m /g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H , CO , N , and O through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10 cm (STP) cm cm s cmHg cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes11030204</identifier><identifier>PMID: 33805729</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adsorption ; biopolymer membrane ; Carbon dioxide ; Cellulose ; Cellulose acetate ; Cellulose fibers ; Composite materials ; Diffusion rate ; Fabrication ; gas separation ; Gas transport ; Gases ; Glass transition ; Lignin ; Lignocellulose ; Membranes ; Morphology ; nanocellulose ; nanocomposites ; Nanofibers ; Optimization ; Permeability ; Plants ; Polymers ; Separation processes ; Starch ; Tensile strength ; Thermal properties ; Thermal stability ; Thermodynamic properties</subject><ispartof>Membranes (Basel), 2021-03, Vol.11 (3), p.204</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</citedby><cites>FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</cites><orcidid>0000-0002-0846-2416 ; 0000-0001-5467-2839 ; 0000-0001-7433-0350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2502512627/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2502512627?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33805729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293085$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-193811$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pylypchuk, Ievgen</creatorcontrib><creatorcontrib>Selyanchyn, Roman</creatorcontrib><creatorcontrib>Budnyak, Tetyana</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Lindström, Mikael</creatorcontrib><creatorcontrib>Fujikawa, Shigenori</creatorcontrib><creatorcontrib>Sevastyanova, Olena</creatorcontrib><title>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</title><title>Membranes (Basel)</title><addtitle>Membranes (Basel)</addtitle><description>Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m /g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H , CO , N , and O through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10 cm (STP) cm cm s cmHg cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.</description><subject>Adsorption</subject><subject>biopolymer membrane</subject><subject>Carbon dioxide</subject><subject>Cellulose</subject><subject>Cellulose acetate</subject><subject>Cellulose fibers</subject><subject>Composite materials</subject><subject>Diffusion rate</subject><subject>Fabrication</subject><subject>gas separation</subject><subject>Gas transport</subject><subject>Gases</subject><subject>Glass transition</subject><subject>Lignin</subject><subject>Lignocellulose</subject><subject>Membranes</subject><subject>Morphology</subject><subject>nanocellulose</subject><subject>nanocomposites</subject><subject>Nanofibers</subject><subject>Optimization</subject><subject>Permeability</subject><subject>Plants</subject><subject>Polymers</subject><subject>Separation processes</subject><subject>Starch</subject><subject>Tensile strength</subject><subject>Thermal properties</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEUhUcIRKvSB2CDrLJlwH8zHrNASkMpEeFnEWBpeTzXicPEDvYMFQ_C-2KStjRigTe2rr9zjn11i-Ixwc8Zk_jFBjZt1B4SIZhhivm94phiIUrMRHX_zvmoOE1pjfOqcVUz_LA4YqzBlaDyuPh1NomDs8443aOvIXRnaO6WPhjo-7EPyRn0_iboJZp524_gDaBg0buo7bCjnUfBo2EF6FMMW8iGkJD2HbrUCS2yNm1DHFDGFqN3Rg9QnusEHfqg_yYBmobNNicOkB4VD6zuE5xe7yfF5zcXi-nbcv7xcjadzEtTMz6UhtlOQAOVrhvGheTEWk7atpaAW85B5kpLpDF1LeqqoZxqW3W6tUaDwEyyk2K29-2CXqttdBsdf6qgndoVQlwqnX9jelCaQO6YNcC6jtOKSkENM9KatuGMCpO9nu290hVsx_bA7bX7Mtm5pVERyRpCMl7-H_82rBSVDDdV5l_t-QxvoDPgh6j7A9nhjXcrtQw_lJC5DZhng6fXBjF8HyENah3G6HN7Fa0wrQitqcgU2VMmhpQi2NsEgtWfuVP_zF3WPLn7tFvFzZSx35h62Ps</recordid><startdate>20210313</startdate><enddate>20210313</enddate><creator>Pylypchuk, Ievgen</creator><creator>Selyanchyn, Roman</creator><creator>Budnyak, Tetyana</creator><creator>Zhao, Yadong</creator><creator>Lindström, Mikael</creator><creator>Fujikawa, Shigenori</creator><creator>Sevastyanova, Olena</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>ABAVF</scope><scope>DG7</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0846-2416</orcidid><orcidid>https://orcid.org/0000-0001-5467-2839</orcidid><orcidid>https://orcid.org/0000-0001-7433-0350</orcidid></search><sort><creationdate>20210313</creationdate><title>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</title><author>Pylypchuk, Ievgen ; Selyanchyn, Roman ; Budnyak, Tetyana ; Zhao, Yadong ; Lindström, Mikael ; Fujikawa, Shigenori ; Sevastyanova, Olena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>biopolymer membrane</topic><topic>Carbon dioxide</topic><topic>Cellulose</topic><topic>Cellulose acetate</topic><topic>Cellulose fibers</topic><topic>Composite materials</topic><topic>Diffusion rate</topic><topic>Fabrication</topic><topic>gas separation</topic><topic>Gas transport</topic><topic>Gases</topic><topic>Glass transition</topic><topic>Lignin</topic><topic>Lignocellulose</topic><topic>Membranes</topic><topic>Morphology</topic><topic>nanocellulose</topic><topic>nanocomposites</topic><topic>Nanofibers</topic><topic>Optimization</topic><topic>Permeability</topic><topic>Plants</topic><topic>Polymers</topic><topic>Separation processes</topic><topic>Starch</topic><topic>Tensile strength</topic><topic>Thermal properties</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pylypchuk, Ievgen</creatorcontrib><creatorcontrib>Selyanchyn, Roman</creatorcontrib><creatorcontrib>Budnyak, Tetyana</creatorcontrib><creatorcontrib>Zhao, Yadong</creatorcontrib><creatorcontrib>Lindström, Mikael</creatorcontrib><creatorcontrib>Fujikawa, Shigenori</creatorcontrib><creatorcontrib>Sevastyanova, Olena</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SWEPUB Stockholms universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pylypchuk, Ievgen</au><au>Selyanchyn, Roman</au><au>Budnyak, Tetyana</au><au>Zhao, Yadong</au><au>Lindström, Mikael</au><au>Fujikawa, Shigenori</au><au>Sevastyanova, Olena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>"Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites</atitle><jtitle>Membranes (Basel)</jtitle><addtitle>Membranes (Basel)</addtitle><date>2021-03-13</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>204</spage><pages>204-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Nanocellulose membranes based on tunicate-derived cellulose nanofibers, starch, and ~5% wood-derived lignin were investigated using three different types of lignin. The addition of lignin into cellulose membranes increased the specific surface area (from 5 to ~50 m /g), however the fine porous geometry of the nanocellulose with characteristic pores below 10 nm in diameter remained similar for all membranes. The permeation of H , CO , N , and O through the membranes was investigated and a characteristic Knudsen diffusion through the membranes was observed at a rate proportional to the inverse of their molecular sizes. Permeability values, however, varied significantly between samples containing different lignins, ranging from several to thousands of barrers (10 cm (STP) cm cm s cmHg cm), and were related to the observed morphology and lignin distribution inside the membranes. Additionally, the addition of ~5% lignin resulted in a significant increase in tensile strength from 3 GPa to ~6-7 GPa, but did not change thermal properties (glass transition or thermal stability). Overall, the combination of plant-derived lignin as a filler or binder in cellulose-starch composites with a sea-animal derived nanocellulose presents an interesting new approach for the fabrication of membranes from abundant bio-derived materials. Future studies should focus on the optimization of these types of membranes for the selective and fast transport of gases needed for a variety of industrial separation processes.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33805729</pmid><doi>10.3390/membranes11030204</doi><orcidid>https://orcid.org/0000-0002-0846-2416</orcidid><orcidid>https://orcid.org/0000-0001-5467-2839</orcidid><orcidid>https://orcid.org/0000-0001-7433-0350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2021-03, Vol.11 (3), p.204
issn 2077-0375
2077-0375
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a1e572fce3dd4252972c3c9fcb84327c
source Publicly Available Content Database; PubMed Central
subjects Adsorption
biopolymer membrane
Carbon dioxide
Cellulose
Cellulose acetate
Cellulose fibers
Composite materials
Diffusion rate
Fabrication
gas separation
Gas transport
Gases
Glass transition
Lignin
Lignocellulose
Membranes
Morphology
nanocellulose
nanocomposites
Nanofibers
Optimization
Permeability
Plants
Polymers
Separation processes
Starch
Tensile strength
Thermal properties
Thermal stability
Thermodynamic properties
title "Artificial Wood" Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%22Artificial%20Wood%22%20Lignocellulosic%20Membranes:%20Influence%20of%20Kraft%20Lignin%20on%20the%20Properties%20and%20Gas%20Transport%20in%20Tunicate-Based%20Nanocellulose%20Composites&rft.jtitle=Membranes%20(Basel)&rft.au=Pylypchuk,%20Ievgen&rft.date=2021-03-13&rft.volume=11&rft.issue=3&rft.spage=204&rft.pages=204-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes11030204&rft_dat=%3Cproquest_doaj_%3E2502512627%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c634t-c3fd7e8e5a68347941ff41bb69e0b44e9941b19cc667658242af5dabfcae70393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2502512627&rft_id=info:pmid/33805729&rfr_iscdi=true