Loading…

Expanded Signal to Noise Ratio Estimates for Validating Next-Generation Satellite Sensors in Oceanic, Coastal, and Inland Waters

The launch of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the Surface Biology and Geology (SBG) satellite sensors will provide increased spectral resolution compared to existing platforms. These new sensors will require robust calibration and validation datasets, but existing field...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2024-04, Vol.16 (7), p.1238
Main Authors: Kudela, Raphael M, Hooker, Stanford B, Guild, Liane S, Houskeeper, Henry F, Taylor, Niky
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The launch of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the Surface Biology and Geology (SBG) satellite sensors will provide increased spectral resolution compared to existing platforms. These new sensors will require robust calibration and validation datasets, but existing field-based instrumentation is limited in its availability and potential for geographic coverage, particularly for coastal and inland waters, where optical complexity is substantially greater than in the open ocean. The minimum signal-to-noise ratio (SNR) is an important metric for assessing the reliability of derived biogeochemical products and their subsequent use as proxies, such as for biomass, in aquatic systems. The SNR can provide insight into whether legacy sensors can be used for algorithm development as well as calibration and validation activities for next-generation platforms. We extend our previous evaluation of SNR and associated uncertainties for representative coastal and inland targets to include the imaging sensors PRISM and AVIRIS-NG, the airborne-deployed C-AIR radiometers, and the shipboard HydroRad and HyperSAS radiometers, which were not included in the original analysis. Nearly all the assessed hyperspectral sensors fail to meet proposed criteria for SNR or uncertainty in remote sensing reflectance (Rrs) for some part of the spectrum, with the most common failures (>20% uncertainty) below 400 nm, but all the sensors were below the proposed 17.5% uncertainty for derived chlorophyll-a. Instrument suites for both in-water and airborne platforms that are capable of exceeding all the proposed thresholds for SNR and Rrs uncertainty are commercially available. Thus, there is a straightforward path to obtaining calibration and validation data for current and next-generation sensors, but the availability of suitable high spectral resolution sensors is limited.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16071238