Loading…
Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light
Current mixotrophic culture systems for have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in . . The combination of 1...
Saved in:
Published in: | Metabolites 2021-12, Vol.11 (12), p.866 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3 |
container_end_page | |
container_issue | 12 |
container_start_page | 866 |
container_title | Metabolites |
container_volume | 11 |
creator | Capa-Robles, Willian García-Mendoza, Ernesto Paniagua-Michel, José de Jesús |
description | Current mixotrophic culture systems for
have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in
.
. The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m
s
light intensity enabled significant assimilation of glycerol by
.
and consequently enhanced growth (2.1 × 10
cell mL
) and β-carotene accumulation (4.43 pg cell
). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m
s
) caused the β-carotene to reach values higher than 30 pg cell
and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of
to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of
. |
doi_str_mv | 10.3390/metabo11120866 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a207a1969d344f47bc44ed292edbb7b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a207a1969d344f47bc44ed292edbb7b5</doaj_id><sourcerecordid>2613292777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</originalsourceid><addsrcrecordid>eNpdks1uEzEQx1cIRKvSK0dkiQuHpvgra_uCBKGUSEEgFc6WPxNHu3bxehH7GjwKD8Iz4SSlavDF4_Fv_uPxTNM8R_CSEAFf964onRBCGPK2fdScYoz4DAkuHj-wT5rzYdjCulo4ZxA9bU4IFRS2mJ42v67iRkXjLPjze2ZUTsVFB1S04F1IvRoG8CUnO5oSUgR6AstYD5X-FH6mktPtZgIhgvdjVF1wXafAUI2ogDI51WAFFqnXIdaIm5JVcesJJA-uu8m4nLoLcLPDQ5ku9jlXYb0pz5onXnWDO7_bz5pvH66-Lj7OVp-vl4u3q5mhnJYZqSUzapH3EDLrajUUz4VG1rcGMuGhMdxrTo2fV7dteSsMoy10iGPCvCZnzfKga5PaytscepUnmVSQe0fKa6lyCaZzUmHIFBKtsIRST5k2lDqLBXZWa6bnVevNQet21L2zxsVabXckenwTw0au0w_JGeSMkyrw6k4gp--jG4rsw2B2PxpdGgeJW0RqPsZYRV_-h27TmGsD9hTmiLRMVOryQO0bkZ2_fwyCcjc98nh6asCLhyXc4_9mhfwFc9LDTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612813679</pqid></control><display><type>article</type><title>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Capa-Robles, Willian ; García-Mendoza, Ernesto ; Paniagua-Michel, José de Jesús</creator><creatorcontrib>Capa-Robles, Willian ; García-Mendoza, Ernesto ; Paniagua-Michel, José de Jesús</creatorcontrib><description>Current mixotrophic culture systems for
have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in
.
. The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m
s
light intensity enabled significant assimilation of glycerol by
.
and consequently enhanced growth (2.1 × 10
cell mL
) and β-carotene accumulation (4.43 pg cell
). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m
s
) caused the β-carotene to reach values higher than 30 pg cell
and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of
to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of
.</description><identifier>ISSN: 2218-1989</identifier><identifier>EISSN: 2218-1989</identifier><identifier>DOI: 10.3390/metabo11120866</identifier><identifier>PMID: 34940624</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algae ; Aquatic microorganisms ; Biomass ; Carbon ; Carotenoids ; Cell culture ; Cell growth ; Dunaliella ; Dunaliella salina ; Glycerol ; Light ; Light intensity ; Metabolism ; Metabolites ; Microorganisms ; Mixotrophy ; Osmoregulation ; Photons ; Photosynthesis ; Physiology ; Productivity ; Salinity ; Salinity effects ; Sodium chloride ; β-Carotene</subject><ispartof>Metabolites, 2021-12, Vol.11 (12), p.866</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</citedby><cites>FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</cites><orcidid>0000-0003-1738-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612813679/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612813679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34940624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Capa-Robles, Willian</creatorcontrib><creatorcontrib>García-Mendoza, Ernesto</creatorcontrib><creatorcontrib>Paniagua-Michel, José de Jesús</creatorcontrib><title>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</title><title>Metabolites</title><addtitle>Metabolites</addtitle><description>Current mixotrophic culture systems for
have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in
.
. The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m
s
light intensity enabled significant assimilation of glycerol by
.
and consequently enhanced growth (2.1 × 10
cell mL
) and β-carotene accumulation (4.43 pg cell
). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m
s
) caused the β-carotene to reach values higher than 30 pg cell
and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of
to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of
.</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carotenoids</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Dunaliella</subject><subject>Dunaliella salina</subject><subject>Glycerol</subject><subject>Light</subject><subject>Light intensity</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Mixotrophy</subject><subject>Osmoregulation</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Productivity</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sodium chloride</subject><subject>β-Carotene</subject><issn>2218-1989</issn><issn>2218-1989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEQx1cIRKvSK0dkiQuHpvgra_uCBKGUSEEgFc6WPxNHu3bxehH7GjwKD8Iz4SSlavDF4_Fv_uPxTNM8R_CSEAFf964onRBCGPK2fdScYoz4DAkuHj-wT5rzYdjCulo4ZxA9bU4IFRS2mJ42v67iRkXjLPjze2ZUTsVFB1S04F1IvRoG8CUnO5oSUgR6AstYD5X-FH6mktPtZgIhgvdjVF1wXafAUI2ogDI51WAFFqnXIdaIm5JVcesJJA-uu8m4nLoLcLPDQ5ku9jlXYb0pz5onXnWDO7_bz5pvH66-Lj7OVp-vl4u3q5mhnJYZqSUzapH3EDLrajUUz4VG1rcGMuGhMdxrTo2fV7dteSsMoy10iGPCvCZnzfKga5PaytscepUnmVSQe0fKa6lyCaZzUmHIFBKtsIRST5k2lDqLBXZWa6bnVevNQet21L2zxsVabXckenwTw0au0w_JGeSMkyrw6k4gp--jG4rsw2B2PxpdGgeJW0RqPsZYRV_-h27TmGsD9hTmiLRMVOryQO0bkZ2_fwyCcjc98nh6asCLhyXc4_9mhfwFc9LDTg</recordid><startdate>20211213</startdate><enddate>20211213</enddate><creator>Capa-Robles, Willian</creator><creator>García-Mendoza, Ernesto</creator><creator>Paniagua-Michel, José de Jesús</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1738-7419</orcidid></search><sort><creationdate>20211213</creationdate><title>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</title><author>Capa-Robles, Willian ; García-Mendoza, Ernesto ; Paniagua-Michel, José de Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carotenoids</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Dunaliella</topic><topic>Dunaliella salina</topic><topic>Glycerol</topic><topic>Light</topic><topic>Light intensity</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Mixotrophy</topic><topic>Osmoregulation</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Productivity</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sodium chloride</topic><topic>β-Carotene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capa-Robles, Willian</creatorcontrib><creatorcontrib>García-Mendoza, Ernesto</creatorcontrib><creatorcontrib>Paniagua-Michel, José de Jesús</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Metabolites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capa-Robles, Willian</au><au>García-Mendoza, Ernesto</au><au>Paniagua-Michel, José de Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</atitle><jtitle>Metabolites</jtitle><addtitle>Metabolites</addtitle><date>2021-12-13</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>866</spage><pages>866-</pages><issn>2218-1989</issn><eissn>2218-1989</eissn><abstract>Current mixotrophic culture systems for
have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in
.
. The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m
s
light intensity enabled significant assimilation of glycerol by
.
and consequently enhanced growth (2.1 × 10
cell mL
) and β-carotene accumulation (4.43 pg cell
). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m
s
) caused the β-carotene to reach values higher than 30 pg cell
and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of
to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of
.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34940624</pmid><doi>10.3390/metabo11120866</doi><orcidid>https://orcid.org/0000-0003-1738-7419</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2218-1989 |
ispartof | Metabolites, 2021-12, Vol.11 (12), p.866 |
issn | 2218-1989 2218-1989 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a207a1969d344f47bc44ed292edbb7b5 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free |
subjects | Algae Aquatic microorganisms Biomass Carbon Carotenoids Cell culture Cell growth Dunaliella Dunaliella salina Glycerol Light Light intensity Metabolism Metabolites Microorganisms Mixotrophy Osmoregulation Photons Photosynthesis Physiology Productivity Salinity Salinity effects Sodium chloride β-Carotene |
title | Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20%CE%B2-carotene%20and%20Biomass%20Production%20by%20Induced%20Mixotrophy%20in%20Dunaliella%20salina%20across%20a%20Combined%20Strategy%20of%20Glycerol,%20Salinity,%20and%20Light&rft.jtitle=Metabolites&rft.au=Capa-Robles,%20Willian&rft.date=2021-12-13&rft.volume=11&rft.issue=12&rft.spage=866&rft.pages=866-&rft.issn=2218-1989&rft.eissn=2218-1989&rft_id=info:doi/10.3390/metabo11120866&rft_dat=%3Cproquest_doaj_%3E2613292777%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612813679&rft_id=info:pmid/34940624&rfr_iscdi=true |