Loading…

Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light

Current mixotrophic culture systems for have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in . . The combination of 1...

Full description

Saved in:
Bibliographic Details
Published in:Metabolites 2021-12, Vol.11 (12), p.866
Main Authors: Capa-Robles, Willian, García-Mendoza, Ernesto, Paniagua-Michel, José de Jesús
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3
cites cdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3
container_end_page
container_issue 12
container_start_page 866
container_title Metabolites
container_volume 11
creator Capa-Robles, Willian
García-Mendoza, Ernesto
Paniagua-Michel, José de Jesús
description Current mixotrophic culture systems for have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in . . The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m s light intensity enabled significant assimilation of glycerol by . and consequently enhanced growth (2.1 × 10 cell mL ) and β-carotene accumulation (4.43 pg cell ). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m s ) caused the β-carotene to reach values higher than 30 pg cell and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of .
doi_str_mv 10.3390/metabo11120866
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a207a1969d344f47bc44ed292edbb7b5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a207a1969d344f47bc44ed292edbb7b5</doaj_id><sourcerecordid>2613292777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</originalsourceid><addsrcrecordid>eNpdks1uEzEQx1cIRKvSK0dkiQuHpvgra_uCBKGUSEEgFc6WPxNHu3bxehH7GjwKD8Iz4SSlavDF4_Fv_uPxTNM8R_CSEAFf964onRBCGPK2fdScYoz4DAkuHj-wT5rzYdjCulo4ZxA9bU4IFRS2mJ42v67iRkXjLPjze2ZUTsVFB1S04F1IvRoG8CUnO5oSUgR6AstYD5X-FH6mktPtZgIhgvdjVF1wXafAUI2ogDI51WAFFqnXIdaIm5JVcesJJA-uu8m4nLoLcLPDQ5ku9jlXYb0pz5onXnWDO7_bz5pvH66-Lj7OVp-vl4u3q5mhnJYZqSUzapH3EDLrajUUz4VG1rcGMuGhMdxrTo2fV7dteSsMoy10iGPCvCZnzfKga5PaytscepUnmVSQe0fKa6lyCaZzUmHIFBKtsIRST5k2lDqLBXZWa6bnVevNQet21L2zxsVabXckenwTw0au0w_JGeSMkyrw6k4gp--jG4rsw2B2PxpdGgeJW0RqPsZYRV_-h27TmGsD9hTmiLRMVOryQO0bkZ2_fwyCcjc98nh6asCLhyXc4_9mhfwFc9LDTg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612813679</pqid></control><display><type>article</type><title>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><creator>Capa-Robles, Willian ; García-Mendoza, Ernesto ; Paniagua-Michel, José de Jesús</creator><creatorcontrib>Capa-Robles, Willian ; García-Mendoza, Ernesto ; Paniagua-Michel, José de Jesús</creatorcontrib><description>Current mixotrophic culture systems for have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in . . The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m s light intensity enabled significant assimilation of glycerol by . and consequently enhanced growth (2.1 × 10 cell mL ) and β-carotene accumulation (4.43 pg cell ). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m s ) caused the β-carotene to reach values higher than 30 pg cell and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of .</description><identifier>ISSN: 2218-1989</identifier><identifier>EISSN: 2218-1989</identifier><identifier>DOI: 10.3390/metabo11120866</identifier><identifier>PMID: 34940624</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algae ; Aquatic microorganisms ; Biomass ; Carbon ; Carotenoids ; Cell culture ; Cell growth ; Dunaliella ; Dunaliella salina ; Glycerol ; Light ; Light intensity ; Metabolism ; Metabolites ; Microorganisms ; Mixotrophy ; Osmoregulation ; Photons ; Photosynthesis ; Physiology ; Productivity ; Salinity ; Salinity effects ; Sodium chloride ; β-Carotene</subject><ispartof>Metabolites, 2021-12, Vol.11 (12), p.866</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</citedby><cites>FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</cites><orcidid>0000-0003-1738-7419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612813679/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612813679?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34940624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Capa-Robles, Willian</creatorcontrib><creatorcontrib>García-Mendoza, Ernesto</creatorcontrib><creatorcontrib>Paniagua-Michel, José de Jesús</creatorcontrib><title>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</title><title>Metabolites</title><addtitle>Metabolites</addtitle><description>Current mixotrophic culture systems for have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in . . The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m s light intensity enabled significant assimilation of glycerol by . and consequently enhanced growth (2.1 × 10 cell mL ) and β-carotene accumulation (4.43 pg cell ). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m s ) caused the β-carotene to reach values higher than 30 pg cell and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of .</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carotenoids</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Dunaliella</subject><subject>Dunaliella salina</subject><subject>Glycerol</subject><subject>Light</subject><subject>Light intensity</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microorganisms</subject><subject>Mixotrophy</subject><subject>Osmoregulation</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Productivity</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sodium chloride</subject><subject>β-Carotene</subject><issn>2218-1989</issn><issn>2218-1989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1uEzEQx1cIRKvSK0dkiQuHpvgra_uCBKGUSEEgFc6WPxNHu3bxehH7GjwKD8Iz4SSlavDF4_Fv_uPxTNM8R_CSEAFf964onRBCGPK2fdScYoz4DAkuHj-wT5rzYdjCulo4ZxA9bU4IFRS2mJ42v67iRkXjLPjze2ZUTsVFB1S04F1IvRoG8CUnO5oSUgR6AstYD5X-FH6mktPtZgIhgvdjVF1wXafAUI2ogDI51WAFFqnXIdaIm5JVcesJJA-uu8m4nLoLcLPDQ5ku9jlXYb0pz5onXnWDO7_bz5pvH66-Lj7OVp-vl4u3q5mhnJYZqSUzapH3EDLrajUUz4VG1rcGMuGhMdxrTo2fV7dteSsMoy10iGPCvCZnzfKga5PaytscepUnmVSQe0fKa6lyCaZzUmHIFBKtsIRST5k2lDqLBXZWa6bnVevNQet21L2zxsVabXckenwTw0au0w_JGeSMkyrw6k4gp--jG4rsw2B2PxpdGgeJW0RqPsZYRV_-h27TmGsD9hTmiLRMVOryQO0bkZ2_fwyCcjc98nh6asCLhyXc4_9mhfwFc9LDTg</recordid><startdate>20211213</startdate><enddate>20211213</enddate><creator>Capa-Robles, Willian</creator><creator>García-Mendoza, Ernesto</creator><creator>Paniagua-Michel, José de Jesús</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1738-7419</orcidid></search><sort><creationdate>20211213</creationdate><title>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</title><author>Capa-Robles, Willian ; García-Mendoza, Ernesto ; Paniagua-Michel, José de Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carotenoids</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Dunaliella</topic><topic>Dunaliella salina</topic><topic>Glycerol</topic><topic>Light</topic><topic>Light intensity</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microorganisms</topic><topic>Mixotrophy</topic><topic>Osmoregulation</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Productivity</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sodium chloride</topic><topic>β-Carotene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capa-Robles, Willian</creatorcontrib><creatorcontrib>García-Mendoza, Ernesto</creatorcontrib><creatorcontrib>Paniagua-Michel, José de Jesús</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Metabolites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capa-Robles, Willian</au><au>García-Mendoza, Ernesto</au><au>Paniagua-Michel, José de Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light</atitle><jtitle>Metabolites</jtitle><addtitle>Metabolites</addtitle><date>2021-12-13</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>866</spage><pages>866-</pages><issn>2218-1989</issn><eissn>2218-1989</eissn><abstract>Current mixotrophic culture systems for have technical limitations to achieve high growth and productivity. The purpose of this study was to optimize the mixotrophic conditions imposed by glycerol, light, and salinity that lead to the highest biomass and β-carotene yields in . . The combination of 12.5 mM glycerol, 3.0 M salinity, and 50 μmol photons m s light intensity enabled significant assimilation of glycerol by . and consequently enhanced growth (2.1 × 10 cell mL ) and β-carotene accumulation (4.43 pg cell ). The saline and light shock induced the assimilation of glycerol by this microalga. At last stage of growth, the increase in light intensity (300 μmol photons m s ) caused the β-carotene to reach values higher than 30 pg cell and tripled the β-carotene values obtained from photoautotrophic cultures using the same light intensity. Increasing the salt concentration from 1.5 to 3.0 M NaCl (non-isosmotic salinity) produced higher growth and microalgal β-carotene than the isosmotic salinity 3.0 M NaCl. The mixotrophic strategy developed in this work is evidenced in the metabolic capability of to use both photosynthesis and organic carbon, viz., glycerol that leads to higher biomass and β-carotene productivity than that of an either phototrophic or heterotrophic process alone. The findings provide insights into the key role of exogenous glycerol with a strategic combination of salinity and light, which evidenced unknown roles of this polyol other than that in osmoregulation, mainly on the growth, pigment accumulation, and carotenogenesis of .</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34940624</pmid><doi>10.3390/metabo11120866</doi><orcidid>https://orcid.org/0000-0003-1738-7419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2218-1989
ispartof Metabolites, 2021-12, Vol.11 (12), p.866
issn 2218-1989
2218-1989
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a207a1969d344f47bc44ed292edbb7b5
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free
subjects Algae
Aquatic microorganisms
Biomass
Carbon
Carotenoids
Cell culture
Cell growth
Dunaliella
Dunaliella salina
Glycerol
Light
Light intensity
Metabolism
Metabolites
Microorganisms
Mixotrophy
Osmoregulation
Photons
Photosynthesis
Physiology
Productivity
Salinity
Salinity effects
Sodium chloride
β-Carotene
title Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20%CE%B2-carotene%20and%20Biomass%20Production%20by%20Induced%20Mixotrophy%20in%20Dunaliella%20salina%20across%20a%20Combined%20Strategy%20of%20Glycerol,%20Salinity,%20and%20Light&rft.jtitle=Metabolites&rft.au=Capa-Robles,%20Willian&rft.date=2021-12-13&rft.volume=11&rft.issue=12&rft.spage=866&rft.pages=866-&rft.issn=2218-1989&rft.eissn=2218-1989&rft_id=info:doi/10.3390/metabo11120866&rft_dat=%3Cproquest_doaj_%3E2613292777%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-386674d1ff007de6244259b1df6c079f0cc8fb84cf559bd6869c7460e18237fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612813679&rft_id=info:pmid/34940624&rfr_iscdi=true