Loading…

Acute exercise in mice transiently remodels the hepatic lipidome in an intensity-dependent manner

Background The content of triacylglycerol (TAG) in the liver is known to rapidly increase after a single bout of exercise followed by recovery to sedentary levels. The response of other hepatic lipids, and acyl chain composition of lipid classes, would provide a deeper understanding of the response...

Full description

Saved in:
Bibliographic Details
Published in:Lipids in health and disease 2020-10, Vol.19 (1), p.1-219, Article 219
Main Authors: Henderson, Gregory C., Martinez Tenorio, Valeria, Tuazon, Marc A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background The content of triacylglycerol (TAG) in the liver is known to rapidly increase after a single bout of exercise followed by recovery to sedentary levels. The response of other hepatic lipids, and acyl chain composition of lipid classes, would provide a deeper understanding of the response of hepatic lipid metabolism to acute exercise. Methods Female mice performed a single bout of continuous exercise (CE), high-intensity interval exercise (HIIE), or no exercise (CON). The total content of various lipids in the liver, and fatty acids within lipid classes, were measured in tissues collected 3 h after exercise (Day 1) and the day following exercise (Day 2). Results The total concentration of TAG rose on Day 1 after exercise (P < 0.05), with a greater elevation in HIIE than CE (P < 0.05), followed by a decline toward CON levels on Day 2. The total concentration of other measured lipid classes was not significantly altered by exercise. However, n-6 polyunsaturated fatty acid relative abundance in diacylglycerol (DAG) was increased by HIIE (P < 0.05). In CON liver, TAG content was positively correlated with DAG and phosphatidylethanolamine (P < 0.05), while these statistical associations were disrupted in exercised mice on Day 1. Conclusions The response of lipid metabolism to exercise involves the coordination of metabolism between various tissues, and the lipid metabolism response to acute exercise places a metabolic burden upon the liver. The present findings describe how the liver copes with this metabolic challenge. The flexibility of the TAG pool size in the liver, and other remodeling of the hepatic lipidome, may be fundamental components of the physiological response to intense exercise. Keywords: Lipidomics, High-intensity interval training, Postexercise recovery, Post-exercise, Intrahepatocellular lipid, Triglyceride
ISSN:1476-511X
1476-511X
DOI:10.1186/s12944-020-01395-4