Loading…

Adjacent Cell Marker Lateral Spillover Compensation and Reinforcement for Multiplexed Images

Multiplex imaging technologies are now routinely capable of measuring more than 40 antibody-labeled parameters in single cells. However, lateral spillage of signals in densely packed tissues presents an obstacle to the assignment of high-dimensional spatial features to individual cells for accurate...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology 2021-07, Vol.12, p.652631-652631
Main Authors: Bai, Yunhao, Zhu, Bokai, Rovira-Clave, Xavier, Chen, Han, Markovic, Maxim, Chan, Chi Ngai, Su, Tung-Hung, McIlwain, David R, Estes, Jacob D, Keren, Leeat, Nolan, Garry P, Jiang, Sizun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiplex imaging technologies are now routinely capable of measuring more than 40 antibody-labeled parameters in single cells. However, lateral spillage of signals in densely packed tissues presents an obstacle to the assignment of high-dimensional spatial features to individual cells for accurate cell-type annotation. We devised a method to correct for lateral spillage of cell surface markers between adjacent cells termed REinforcement Dynamic Spillover EliminAtion (REDSEA). The use of REDSEA decreased contaminating signals from neighboring cells. It improved the recovery of marker signals across both isotopic (i.e., Multiplexed Ion Beam Imaging) and immunofluorescent (i.e., Cyclic Immunofluorescence) multiplexed images resulting in a marked improvement in cell-type classification.
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2021.652631