Loading…

Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica

Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-app...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.161213-161226
Main Authors: Memon, Khuhed, Yahya, Norashikin, Siddiqui, Shahabuddin, Hashim, Hilwati, Remli, Rabani, Mustapha Mohd Mustapha, Aida-Widure, Zuki Yusoff, Mohd, Saad Azhar Ali, Syed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3
container_end_page 161226
container_issue
container_start_page 161213
container_title IEEE access
container_volume 12
creator Memon, Khuhed
Yahya, Norashikin
Siddiqui, Shahabuddin
Hashim, Hilwati
Remli, Rabani
Mustapha Mohd Mustapha, Aida-Widure
Zuki Yusoff, Mohd
Saad Azhar Ali, Syed
description Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO.
doi_str_mv 10.1109/ACCESS.2024.3487784
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a232c85cee9148b9af220c4732ede314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10737341</ieee_id><doaj_id>oai_doaj_org_article_a232c85cee9148b9af220c4732ede314</doaj_id><sourcerecordid>oai_doaj_org_article_a232c85cee9148b9af220c4732ede314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3</originalsourceid><addsrcrecordid>eNpNkU1u2zAUhIWiBWokPkG74AXk8k9_S1d2WwNODNTNmngiHw0GsiiQ8sLX6IlDxUEQbsgZYj48crLsG6MrxmjzY9222-NxxSmXKyHrqqrlp2zBWdnkohDl5w_nr9kyxmeaVp2solpk_38GcAPZY3R-IEc8nXGYYJrFU3TDiWwQx3QNYZgVDIbspkj--h5JyrX-PF4mDPnaGTRk46zFkAgO-iTgNPjoIvGWPFz6yY0pdNQ9hld3Zj3iJfjzFXs3JecwTk7DffbFQh9x-bbfZU-_tv_aP_n-8HvXrve55iWbct4ZaQ0Alh2rug5NI2pdl9hBYWmTfqakWgpaQiUoGpQMDZOFxUIaK6DW4i7b3bjGw7MagztDuCoPTr0aPpwUhDRQjwq44LouNGLDZN01YDlP9ErwRBZMJpa4sXR6Wwxo33mMqrkldWtJzS2pt5ZS6vst5RDxQ6ISlZBMvADR-pF6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</title><source>IEEE Xplore Open Access Journals</source><creator>Memon, Khuhed ; Yahya, Norashikin ; Siddiqui, Shahabuddin ; Hashim, Hilwati ; Remli, Rabani ; Mustapha Mohd Mustapha, Aida-Widure ; Zuki Yusoff, Mohd ; Saad Azhar Ali, Syed</creator><creatorcontrib>Memon, Khuhed ; Yahya, Norashikin ; Siddiqui, Shahabuddin ; Hashim, Hilwati ; Remli, Rabani ; Mustapha Mohd Mustapha, Aida-Widure ; Zuki Yusoff, Mohd ; Saad Azhar Ali, Syed</creatorcontrib><description>Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3487784</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Brain MRI ; Computer architecture ; computer-aided diagnosis ; deep learning ; Differential diagnosis ; lesion segmentation ; Lesions ; Magnetic resonance imaging ; Medical diagnostic imaging ; Neurological diseases ; Testing ; Three-dimensional displays ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.161213-161226</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3</cites><orcidid>0000-0003-4057-0000 ; 0009-0004-7109-7070 ; 0000-0002-5615-4629 ; 0000-0001-8926-1036 ; 0000-0002-9812-0435 ; 0000-0001-9306-6655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10737341$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Memon, Khuhed</creatorcontrib><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Siddiqui, Shahabuddin</creatorcontrib><creatorcontrib>Hashim, Hilwati</creatorcontrib><creatorcontrib>Remli, Rabani</creatorcontrib><creatorcontrib>Mustapha Mohd Mustapha, Aida-Widure</creatorcontrib><creatorcontrib>Zuki Yusoff, Mohd</creatorcontrib><creatorcontrib>Saad Azhar Ali, Syed</creatorcontrib><title>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</title><title>IEEE access</title><addtitle>Access</addtitle><description>Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO.</description><subject>Accuracy</subject><subject>Brain MRI</subject><subject>Computer architecture</subject><subject>computer-aided diagnosis</subject><subject>deep learning</subject><subject>Differential diagnosis</subject><subject>lesion segmentation</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnostic imaging</subject><subject>Neurological diseases</subject><subject>Testing</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1u2zAUhIWiBWokPkG74AXk8k9_S1d2WwNODNTNmngiHw0GsiiQ8sLX6IlDxUEQbsgZYj48crLsG6MrxmjzY9222-NxxSmXKyHrqqrlp2zBWdnkohDl5w_nr9kyxmeaVp2solpk_38GcAPZY3R-IEc8nXGYYJrFU3TDiWwQx3QNYZgVDIbspkj--h5JyrX-PF4mDPnaGTRk46zFkAgO-iTgNPjoIvGWPFz6yY0pdNQ9hld3Zj3iJfjzFXs3JecwTk7DffbFQh9x-bbfZU-_tv_aP_n-8HvXrve55iWbct4ZaQ0Alh2rug5NI2pdl9hBYWmTfqakWgpaQiUoGpQMDZOFxUIaK6DW4i7b3bjGw7MagztDuCoPTr0aPpwUhDRQjwq44LouNGLDZN01YDlP9ErwRBZMJpa4sXR6Wwxo33mMqrkldWtJzS2pt5ZS6vst5RDxQ6ISlZBMvADR-pF6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Memon, Khuhed</creator><creator>Yahya, Norashikin</creator><creator>Siddiqui, Shahabuddin</creator><creator>Hashim, Hilwati</creator><creator>Remli, Rabani</creator><creator>Mustapha Mohd Mustapha, Aida-Widure</creator><creator>Zuki Yusoff, Mohd</creator><creator>Saad Azhar Ali, Syed</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4057-0000</orcidid><orcidid>https://orcid.org/0009-0004-7109-7070</orcidid><orcidid>https://orcid.org/0000-0002-5615-4629</orcidid><orcidid>https://orcid.org/0000-0001-8926-1036</orcidid><orcidid>https://orcid.org/0000-0002-9812-0435</orcidid><orcidid>https://orcid.org/0000-0001-9306-6655</orcidid></search><sort><creationdate>2024</creationdate><title>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</title><author>Memon, Khuhed ; Yahya, Norashikin ; Siddiqui, Shahabuddin ; Hashim, Hilwati ; Remli, Rabani ; Mustapha Mohd Mustapha, Aida-Widure ; Zuki Yusoff, Mohd ; Saad Azhar Ali, Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Brain MRI</topic><topic>Computer architecture</topic><topic>computer-aided diagnosis</topic><topic>deep learning</topic><topic>Differential diagnosis</topic><topic>lesion segmentation</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnostic imaging</topic><topic>Neurological diseases</topic><topic>Testing</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Memon, Khuhed</creatorcontrib><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Siddiqui, Shahabuddin</creatorcontrib><creatorcontrib>Hashim, Hilwati</creatorcontrib><creatorcontrib>Remli, Rabani</creatorcontrib><creatorcontrib>Mustapha Mohd Mustapha, Aida-Widure</creatorcontrib><creatorcontrib>Zuki Yusoff, Mohd</creatorcontrib><creatorcontrib>Saad Azhar Ali, Syed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Memon, Khuhed</au><au>Yahya, Norashikin</au><au>Siddiqui, Shahabuddin</au><au>Hashim, Hilwati</au><au>Remli, Rabani</au><au>Mustapha Mohd Mustapha, Aida-Widure</au><au>Zuki Yusoff, Mohd</au><au>Saad Azhar Ali, Syed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>161213</spage><epage>161226</epage><pages>161213-161226</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3487784</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4057-0000</orcidid><orcidid>https://orcid.org/0009-0004-7109-7070</orcidid><orcidid>https://orcid.org/0000-0002-5615-4629</orcidid><orcidid>https://orcid.org/0000-0001-8926-1036</orcidid><orcidid>https://orcid.org/0000-0002-9812-0435</orcidid><orcidid>https://orcid.org/0000-0001-9306-6655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.161213-161226
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a232c85cee9148b9af220c4732ede314
source IEEE Xplore Open Access Journals
subjects Accuracy
Brain MRI
Computer architecture
computer-aided diagnosis
deep learning
Differential diagnosis
lesion segmentation
Lesions
Magnetic resonance imaging
Medical diagnostic imaging
Neurological diseases
Testing
Three-dimensional displays
Training
title Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Lesion%20Segmentation%20Using%20Deep%20Learning%20and%20Its%20Role%20in%20Computer-Aided%20Differential%20Diagnosis%20of%20Multiple%20Sclerosis%20and%20Neuromyelitis%20Optica&rft.jtitle=IEEE%20access&rft.au=Memon,%20Khuhed&rft.date=2024&rft.volume=12&rft.spage=161213&rft.epage=161226&rft.pages=161213-161226&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3487784&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_a232c85cee9148b9af220c4732ede314%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10737341&rfr_iscdi=true