Loading…
Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica
Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-app...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.161213-161226 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3 |
container_end_page | 161226 |
container_issue | |
container_start_page | 161213 |
container_title | IEEE access |
container_volume | 12 |
creator | Memon, Khuhed Yahya, Norashikin Siddiqui, Shahabuddin Hashim, Hilwati Remli, Rabani Mustapha Mohd Mustapha, Aida-Widure Zuki Yusoff, Mohd Saad Azhar Ali, Syed |
description | Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO. |
doi_str_mv | 10.1109/ACCESS.2024.3487784 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a232c85cee9148b9af220c4732ede314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10737341</ieee_id><doaj_id>oai_doaj_org_article_a232c85cee9148b9af220c4732ede314</doaj_id><sourcerecordid>oai_doaj_org_article_a232c85cee9148b9af220c4732ede314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3</originalsourceid><addsrcrecordid>eNpNkU1u2zAUhIWiBWokPkG74AXk8k9_S1d2WwNODNTNmngiHw0GsiiQ8sLX6IlDxUEQbsgZYj48crLsG6MrxmjzY9222-NxxSmXKyHrqqrlp2zBWdnkohDl5w_nr9kyxmeaVp2solpk_38GcAPZY3R-IEc8nXGYYJrFU3TDiWwQx3QNYZgVDIbspkj--h5JyrX-PF4mDPnaGTRk46zFkAgO-iTgNPjoIvGWPFz6yY0pdNQ9hld3Zj3iJfjzFXs3JecwTk7DffbFQh9x-bbfZU-_tv_aP_n-8HvXrve55iWbct4ZaQ0Alh2rug5NI2pdl9hBYWmTfqakWgpaQiUoGpQMDZOFxUIaK6DW4i7b3bjGw7MagztDuCoPTr0aPpwUhDRQjwq44LouNGLDZN01YDlP9ErwRBZMJpa4sXR6Wwxo33mMqrkldWtJzS2pt5ZS6vst5RDxQ6ISlZBMvADR-pF6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</title><source>IEEE Xplore Open Access Journals</source><creator>Memon, Khuhed ; Yahya, Norashikin ; Siddiqui, Shahabuddin ; Hashim, Hilwati ; Remli, Rabani ; Mustapha Mohd Mustapha, Aida-Widure ; Zuki Yusoff, Mohd ; Saad Azhar Ali, Syed</creator><creatorcontrib>Memon, Khuhed ; Yahya, Norashikin ; Siddiqui, Shahabuddin ; Hashim, Hilwati ; Remli, Rabani ; Mustapha Mohd Mustapha, Aida-Widure ; Zuki Yusoff, Mohd ; Saad Azhar Ali, Syed</creatorcontrib><description>Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3487784</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Brain MRI ; Computer architecture ; computer-aided diagnosis ; deep learning ; Differential diagnosis ; lesion segmentation ; Lesions ; Magnetic resonance imaging ; Medical diagnostic imaging ; Neurological diseases ; Testing ; Three-dimensional displays ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.161213-161226</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3</cites><orcidid>0000-0003-4057-0000 ; 0009-0004-7109-7070 ; 0000-0002-5615-4629 ; 0000-0001-8926-1036 ; 0000-0002-9812-0435 ; 0000-0001-9306-6655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10737341$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Memon, Khuhed</creatorcontrib><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Siddiqui, Shahabuddin</creatorcontrib><creatorcontrib>Hashim, Hilwati</creatorcontrib><creatorcontrib>Remli, Rabani</creatorcontrib><creatorcontrib>Mustapha Mohd Mustapha, Aida-Widure</creatorcontrib><creatorcontrib>Zuki Yusoff, Mohd</creatorcontrib><creatorcontrib>Saad Azhar Ali, Syed</creatorcontrib><title>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</title><title>IEEE access</title><addtitle>Access</addtitle><description>Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO.</description><subject>Accuracy</subject><subject>Brain MRI</subject><subject>Computer architecture</subject><subject>computer-aided diagnosis</subject><subject>deep learning</subject><subject>Differential diagnosis</subject><subject>lesion segmentation</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnostic imaging</subject><subject>Neurological diseases</subject><subject>Testing</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1u2zAUhIWiBWokPkG74AXk8k9_S1d2WwNODNTNmngiHw0GsiiQ8sLX6IlDxUEQbsgZYj48crLsG6MrxmjzY9222-NxxSmXKyHrqqrlp2zBWdnkohDl5w_nr9kyxmeaVp2solpk_38GcAPZY3R-IEc8nXGYYJrFU3TDiWwQx3QNYZgVDIbspkj--h5JyrX-PF4mDPnaGTRk46zFkAgO-iTgNPjoIvGWPFz6yY0pdNQ9hld3Zj3iJfjzFXs3JecwTk7DffbFQh9x-bbfZU-_tv_aP_n-8HvXrve55iWbct4ZaQ0Alh2rug5NI2pdl9hBYWmTfqakWgpaQiUoGpQMDZOFxUIaK6DW4i7b3bjGw7MagztDuCoPTr0aPpwUhDRQjwq44LouNGLDZN01YDlP9ErwRBZMJpa4sXR6Wwxo33mMqrkldWtJzS2pt5ZS6vst5RDxQ6ISlZBMvADR-pF6</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Memon, Khuhed</creator><creator>Yahya, Norashikin</creator><creator>Siddiqui, Shahabuddin</creator><creator>Hashim, Hilwati</creator><creator>Remli, Rabani</creator><creator>Mustapha Mohd Mustapha, Aida-Widure</creator><creator>Zuki Yusoff, Mohd</creator><creator>Saad Azhar Ali, Syed</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4057-0000</orcidid><orcidid>https://orcid.org/0009-0004-7109-7070</orcidid><orcidid>https://orcid.org/0000-0002-5615-4629</orcidid><orcidid>https://orcid.org/0000-0001-8926-1036</orcidid><orcidid>https://orcid.org/0000-0002-9812-0435</orcidid><orcidid>https://orcid.org/0000-0001-9306-6655</orcidid></search><sort><creationdate>2024</creationdate><title>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</title><author>Memon, Khuhed ; Yahya, Norashikin ; Siddiqui, Shahabuddin ; Hashim, Hilwati ; Remli, Rabani ; Mustapha Mohd Mustapha, Aida-Widure ; Zuki Yusoff, Mohd ; Saad Azhar Ali, Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Brain MRI</topic><topic>Computer architecture</topic><topic>computer-aided diagnosis</topic><topic>deep learning</topic><topic>Differential diagnosis</topic><topic>lesion segmentation</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnostic imaging</topic><topic>Neurological diseases</topic><topic>Testing</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Memon, Khuhed</creatorcontrib><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Siddiqui, Shahabuddin</creatorcontrib><creatorcontrib>Hashim, Hilwati</creatorcontrib><creatorcontrib>Remli, Rabani</creatorcontrib><creatorcontrib>Mustapha Mohd Mustapha, Aida-Widure</creatorcontrib><creatorcontrib>Zuki Yusoff, Mohd</creatorcontrib><creatorcontrib>Saad Azhar Ali, Syed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>DOAJÂ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Memon, Khuhed</au><au>Yahya, Norashikin</au><au>Siddiqui, Shahabuddin</au><au>Hashim, Hilwati</au><au>Remli, Rabani</au><au>Mustapha Mohd Mustapha, Aida-Widure</au><au>Zuki Yusoff, Mohd</au><au>Saad Azhar Ali, Syed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>161213</spage><epage>161226</epage><pages>161213-161226</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Neurological disorders are debilitating diseases and cause significant morbidity worldwide, with some resulting in mortality. Magnetic Resonance Imaging (MRI) is the prime modality to evaluate most of the diseases involving the brain. The organic diseases of the brain show lesions which are well-appreciated on MRI, but require radiologists and medical experts for delineation. This is crucial for the differential diagnosis of diseases producing similar plaque patterns on the brain. Artificial Intelligence (AI) techniques can help in automatic brain lesion segmentation using massive publicly available data to train Computer-Aided Differential Diagnosis (CADD) algorithms. The accuracy of such CADD algorithms hugely relies on the accuracy of lesion segmentation Deep Learning (DL) models. In this research, DeepLabV3+ architecture is used for semantic segmentation of brain lesions using multiple publicly available datasets. In order to enhance the accuracy, additional ground truth (GT) lesion masks from MICCAI-21 dataset were obtained from a consultant radiologist, and used for training and testing. In addition, the developed algorithm underwent testing using 5 Multiple Sclerosis (MS) and 5 Neuromyelitis Optica (NMO) cases obtained from UiTM Hospital, and 35 MS and 27 NMO cases from HCTM Malaysia, and annotated by radiologists. The Dice score of the trained DL model on test data from MICCAI-21, MICCAI-16, Baghdad Teaching Hospital dataset, HCTM, and UiTM data is 0.7304, 0.6426, 0.4117, 0.5308, and 0.4951, respectively. The model is embedded in an app called NeuroImaging Lesion Extractor (NILE) and is available for public use. This app can serve as an assistive tool for experts in developing differential diagnosis algorithms for demyelinating diseases like MS and NMO.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3487784</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4057-0000</orcidid><orcidid>https://orcid.org/0009-0004-7109-7070</orcidid><orcidid>https://orcid.org/0000-0002-5615-4629</orcidid><orcidid>https://orcid.org/0000-0001-8926-1036</orcidid><orcidid>https://orcid.org/0000-0002-9812-0435</orcidid><orcidid>https://orcid.org/0000-0001-9306-6655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.161213-161226 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a232c85cee9148b9af220c4732ede314 |
source | IEEE Xplore Open Access Journals |
subjects | Accuracy Brain MRI Computer architecture computer-aided diagnosis deep learning Differential diagnosis lesion segmentation Lesions Magnetic resonance imaging Medical diagnostic imaging Neurological diseases Testing Three-dimensional displays Training |
title | Brain Lesion Segmentation Using Deep Learning and Its Role in Computer-Aided Differential Diagnosis of Multiple Sclerosis and Neuromyelitis Optica |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Lesion%20Segmentation%20Using%20Deep%20Learning%20and%20Its%20Role%20in%20Computer-Aided%20Differential%20Diagnosis%20of%20Multiple%20Sclerosis%20and%20Neuromyelitis%20Optica&rft.jtitle=IEEE%20access&rft.au=Memon,%20Khuhed&rft.date=2024&rft.volume=12&rft.spage=161213&rft.epage=161226&rft.pages=161213-161226&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3487784&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_a232c85cee9148b9af220c4732ede314%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-2bd4fdaae6b17bbed938c86eba5f0911060c4306a730ede41ed145fe54df3a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10737341&rfr_iscdi=true |