Loading…

Effects of preheating temperatures on β‐lactoglobulin structure and binding interaction with dihydromyricetin

Low aqueous solubility limits the bioactivity and bioaccessibility of dihydromyricetin (DHM). Preheating treatment affects the loading efficiency of β‐lactoglobulin (β‐Lg) to polyphenols, but the mechanism remained unclear. In this study, a serial of temperatures (298 K, 318 K, 338 K, 358 K, and 373...

Full description

Saved in:
Bibliographic Details
Published in:eFood (Amsterdam) 2022-10, Vol.3 (5), p.n/a
Main Authors: Zhang, Wenyuan, Guan, Hui, Huang, Dongjie, Zou, Hui, Li, Dapeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3880-a9ef76cf11d2cfcfd2de62e9de9597fd5cf7fea66b360c8e959116eb704b75743
cites cdi_FETCH-LOGICAL-c3880-a9ef76cf11d2cfcfd2de62e9de9597fd5cf7fea66b360c8e959116eb704b75743
container_end_page n/a
container_issue 5
container_start_page
container_title eFood (Amsterdam)
container_volume 3
creator Zhang, Wenyuan
Guan, Hui
Huang, Dongjie
Zou, Hui
Li, Dapeng
description Low aqueous solubility limits the bioactivity and bioaccessibility of dihydromyricetin (DHM). Preheating treatment affects the loading efficiency of β‐lactoglobulin (β‐Lg) to polyphenols, but the mechanism remained unclear. In this study, a serial of temperatures (298 K, 318 K, 338 K, 358 K, and 373 K) were set to analyze the preheating effects on the loading efficiency of β‐Lg to DHM, and secondary structure change, binding interactions, and particle size distribution were measured and compared with discover the effects. β‐Lg preheated at 358 K possessed the highest binding percentage of 0.45, higher than 0.27, 0.30, 0.36, and 0.40 at 298 K, 318 K, 338 K, and 373 K, the exposure of inside hydrophobic residues contribute the hydrophobic interaction with DHM. Fluorescence quenching and molecular docking analysis showed that DHM tend to bind to β‐Lg preheated at 358 K with a binding constant of 1.76 × 105 L mol−1 and a binding score of −5.84 kcal mol−1, higher than that of other temperatures. Particle size distribution showed that Z‐average size at 358 K was 16.34 nm, significantly higher than others of 7.64, 8.06, 6.84, and 13.4 nm. Preheating unfolded the structure of β‐Lg, exposing the internal residues and enhancing the interaction with DHM. Preheating treatment reduced the β‐sheets proportion of β‐lactoglobulin, increased the aggregation, and exposed the internal hydrophobic residues to form hydrophobic interactions with dihydromyricetin, leading to a higher binding affinity of dihydromyricetin at 358 K.
doi_str_mv 10.1002/efd2.30
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a232dfdca6f440279a987eb1460f9877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a232dfdca6f440279a987eb1460f9877</doaj_id><sourcerecordid>3112452017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-a9ef76cf11d2cfcfd2de62e9de9597fd5cf7fea66b360c8e959116eb704b75743</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhSMEEhVUXCESCxaoxT-pnSxRaaFSJTawthx73LpK4-A4qrrjCJyFg3AIToJDEWLDakYz33szo0mSC4zGGCFyA0aTMUVHyYAwxkYUMXb8Jz9Nhm27QZHMMaacDZJmZgyo0KbOpI2HNchg61UaYNuAl6HzEFt1-vH--fpWSRXcqnJlV9k6bYPvVA-kstZpaWvdC20dok4FG0U7G9aptuu99m6791ZB9D5PToysWhj-xLPkeT57mj6Mlo_3i-ntcqRonqORLMBwpgzGmiij4lkaGIFCQzEpuNETZbgByVhJGVJ5X8WYQclRVvIJz-hZsjj4aic3ovF2K_1eOGnFd8H5lZA-WFWBkIQSbbSSzGQZIryQRc6hxBlDJmY8el0evBrvXjpog9i4ztdxfUExJtmEINxTVwdKede2HszvVIxE_x3Rf0dQFMnrA7mzFez_w8Rsfkci_QU175PZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112452017</pqid></control><display><type>article</type><title>Effects of preheating temperatures on β‐lactoglobulin structure and binding interaction with dihydromyricetin</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Zhang, Wenyuan ; Guan, Hui ; Huang, Dongjie ; Zou, Hui ; Li, Dapeng</creator><creatorcontrib>Zhang, Wenyuan ; Guan, Hui ; Huang, Dongjie ; Zou, Hui ; Li, Dapeng</creatorcontrib><description>Low aqueous solubility limits the bioactivity and bioaccessibility of dihydromyricetin (DHM). Preheating treatment affects the loading efficiency of β‐lactoglobulin (β‐Lg) to polyphenols, but the mechanism remained unclear. In this study, a serial of temperatures (298 K, 318 K, 338 K, 358 K, and 373 K) were set to analyze the preheating effects on the loading efficiency of β‐Lg to DHM, and secondary structure change, binding interactions, and particle size distribution were measured and compared with discover the effects. β‐Lg preheated at 358 K possessed the highest binding percentage of 0.45, higher than 0.27, 0.30, 0.36, and 0.40 at 298 K, 318 K, 338 K, and 373 K, the exposure of inside hydrophobic residues contribute the hydrophobic interaction with DHM. Fluorescence quenching and molecular docking analysis showed that DHM tend to bind to β‐Lg preheated at 358 K with a binding constant of 1.76 × 105 L mol−1 and a binding score of −5.84 kcal mol−1, higher than that of other temperatures. Particle size distribution showed that Z‐average size at 358 K was 16.34 nm, significantly higher than others of 7.64, 8.06, 6.84, and 13.4 nm. Preheating unfolded the structure of β‐Lg, exposing the internal residues and enhancing the interaction with DHM. Preheating treatment reduced the β‐sheets proportion of β‐lactoglobulin, increased the aggregation, and exposed the internal hydrophobic residues to form hydrophobic interactions with dihydromyricetin, leading to a higher binding affinity of dihydromyricetin at 358 K.</description><identifier>ISSN: 2666-3066</identifier><identifier>EISSN: 2666-3066</identifier><identifier>DOI: 10.1002/efd2.30</identifier><language>eng</language><publisher>Cairo: John Wiley &amp; Sons, Inc</publisher><subject>Binding ; binding interaction ; Bioavailability ; Biological activity ; dihydromyricetin ; Heating ; Hydrophobicity ; Lactoglobulin ; Molecular docking ; Particle size ; Particle size distribution ; Polyphenols ; preheating ; Protein structure ; Proteins ; Residues ; Secondary structure ; Simulation ; Size distribution ; Software ; Spectrum analysis ; Temperature ; β-Lactoglobulin</subject><ispartof>eFood (Amsterdam), 2022-10, Vol.3 (5), p.n/a</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Australia, Ltd. on behalf of International Association of Dietetic Nutrition and Safety.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-a9ef76cf11d2cfcfd2de62e9de9597fd5cf7fea66b360c8e959116eb704b75743</citedby><cites>FETCH-LOGICAL-c3880-a9ef76cf11d2cfcfd2de62e9de9597fd5cf7fea66b360c8e959116eb704b75743</cites><orcidid>0000-0002-1816-3217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fefd2.30$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3112452017?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11561,25752,27923,27924,37011,44589,46051,46475</link.rule.ids></links><search><creatorcontrib>Zhang, Wenyuan</creatorcontrib><creatorcontrib>Guan, Hui</creatorcontrib><creatorcontrib>Huang, Dongjie</creatorcontrib><creatorcontrib>Zou, Hui</creatorcontrib><creatorcontrib>Li, Dapeng</creatorcontrib><title>Effects of preheating temperatures on β‐lactoglobulin structure and binding interaction with dihydromyricetin</title><title>eFood (Amsterdam)</title><description>Low aqueous solubility limits the bioactivity and bioaccessibility of dihydromyricetin (DHM). Preheating treatment affects the loading efficiency of β‐lactoglobulin (β‐Lg) to polyphenols, but the mechanism remained unclear. In this study, a serial of temperatures (298 K, 318 K, 338 K, 358 K, and 373 K) were set to analyze the preheating effects on the loading efficiency of β‐Lg to DHM, and secondary structure change, binding interactions, and particle size distribution were measured and compared with discover the effects. β‐Lg preheated at 358 K possessed the highest binding percentage of 0.45, higher than 0.27, 0.30, 0.36, and 0.40 at 298 K, 318 K, 338 K, and 373 K, the exposure of inside hydrophobic residues contribute the hydrophobic interaction with DHM. Fluorescence quenching and molecular docking analysis showed that DHM tend to bind to β‐Lg preheated at 358 K with a binding constant of 1.76 × 105 L mol−1 and a binding score of −5.84 kcal mol−1, higher than that of other temperatures. Particle size distribution showed that Z‐average size at 358 K was 16.34 nm, significantly higher than others of 7.64, 8.06, 6.84, and 13.4 nm. Preheating unfolded the structure of β‐Lg, exposing the internal residues and enhancing the interaction with DHM. Preheating treatment reduced the β‐sheets proportion of β‐lactoglobulin, increased the aggregation, and exposed the internal hydrophobic residues to form hydrophobic interactions with dihydromyricetin, leading to a higher binding affinity of dihydromyricetin at 358 K.</description><subject>Binding</subject><subject>binding interaction</subject><subject>Bioavailability</subject><subject>Biological activity</subject><subject>dihydromyricetin</subject><subject>Heating</subject><subject>Hydrophobicity</subject><subject>Lactoglobulin</subject><subject>Molecular docking</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Polyphenols</subject><subject>preheating</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Residues</subject><subject>Secondary structure</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>β-Lactoglobulin</subject><issn>2666-3066</issn><issn>2666-3066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1OwzAQhSMEEhVUXCESCxaoxT-pnSxRaaFSJTawthx73LpK4-A4qrrjCJyFg3AIToJDEWLDakYz33szo0mSC4zGGCFyA0aTMUVHyYAwxkYUMXb8Jz9Nhm27QZHMMaacDZJmZgyo0KbOpI2HNchg61UaYNuAl6HzEFt1-vH--fpWSRXcqnJlV9k6bYPvVA-kstZpaWvdC20dok4FG0U7G9aptuu99m6791ZB9D5PToysWhj-xLPkeT57mj6Mlo_3i-ntcqRonqORLMBwpgzGmiij4lkaGIFCQzEpuNETZbgByVhJGVJ5X8WYQclRVvIJz-hZsjj4aic3ovF2K_1eOGnFd8H5lZA-WFWBkIQSbbSSzGQZIryQRc6hxBlDJmY8el0evBrvXjpog9i4ztdxfUExJtmEINxTVwdKede2HszvVIxE_x3Rf0dQFMnrA7mzFez_w8Rsfkci_QU175PZ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Zhang, Wenyuan</creator><creator>Guan, Hui</creator><creator>Huang, Dongjie</creator><creator>Zou, Hui</creator><creator>Li, Dapeng</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0K</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1816-3217</orcidid></search><sort><creationdate>202210</creationdate><title>Effects of preheating temperatures on β‐lactoglobulin structure and binding interaction with dihydromyricetin</title><author>Zhang, Wenyuan ; Guan, Hui ; Huang, Dongjie ; Zou, Hui ; Li, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-a9ef76cf11d2cfcfd2de62e9de9597fd5cf7fea66b360c8e959116eb704b75743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Binding</topic><topic>binding interaction</topic><topic>Bioavailability</topic><topic>Biological activity</topic><topic>dihydromyricetin</topic><topic>Heating</topic><topic>Hydrophobicity</topic><topic>Lactoglobulin</topic><topic>Molecular docking</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Polyphenols</topic><topic>preheating</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Residues</topic><topic>Secondary structure</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>β-Lactoglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenyuan</creatorcontrib><creatorcontrib>Guan, Hui</creatorcontrib><creatorcontrib>Huang, Dongjie</creatorcontrib><creatorcontrib>Zou, Hui</creatorcontrib><creatorcontrib>Li, Dapeng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Agriculture Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eFood (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenyuan</au><au>Guan, Hui</au><au>Huang, Dongjie</au><au>Zou, Hui</au><au>Li, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of preheating temperatures on β‐lactoglobulin structure and binding interaction with dihydromyricetin</atitle><jtitle>eFood (Amsterdam)</jtitle><date>2022-10</date><risdate>2022</risdate><volume>3</volume><issue>5</issue><epage>n/a</epage><issn>2666-3066</issn><eissn>2666-3066</eissn><abstract>Low aqueous solubility limits the bioactivity and bioaccessibility of dihydromyricetin (DHM). Preheating treatment affects the loading efficiency of β‐lactoglobulin (β‐Lg) to polyphenols, but the mechanism remained unclear. In this study, a serial of temperatures (298 K, 318 K, 338 K, 358 K, and 373 K) were set to analyze the preheating effects on the loading efficiency of β‐Lg to DHM, and secondary structure change, binding interactions, and particle size distribution were measured and compared with discover the effects. β‐Lg preheated at 358 K possessed the highest binding percentage of 0.45, higher than 0.27, 0.30, 0.36, and 0.40 at 298 K, 318 K, 338 K, and 373 K, the exposure of inside hydrophobic residues contribute the hydrophobic interaction with DHM. Fluorescence quenching and molecular docking analysis showed that DHM tend to bind to β‐Lg preheated at 358 K with a binding constant of 1.76 × 105 L mol−1 and a binding score of −5.84 kcal mol−1, higher than that of other temperatures. Particle size distribution showed that Z‐average size at 358 K was 16.34 nm, significantly higher than others of 7.64, 8.06, 6.84, and 13.4 nm. Preheating unfolded the structure of β‐Lg, exposing the internal residues and enhancing the interaction with DHM. Preheating treatment reduced the β‐sheets proportion of β‐lactoglobulin, increased the aggregation, and exposed the internal hydrophobic residues to form hydrophobic interactions with dihydromyricetin, leading to a higher binding affinity of dihydromyricetin at 358 K.</abstract><cop>Cairo</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/efd2.30</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1816-3217</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3066
ispartof eFood (Amsterdam), 2022-10, Vol.3 (5), p.n/a
issn 2666-3066
2666-3066
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a232dfdca6f440279a987eb1460f9877
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Binding
binding interaction
Bioavailability
Biological activity
dihydromyricetin
Heating
Hydrophobicity
Lactoglobulin
Molecular docking
Particle size
Particle size distribution
Polyphenols
preheating
Protein structure
Proteins
Residues
Secondary structure
Simulation
Size distribution
Software
Spectrum analysis
Temperature
β-Lactoglobulin
title Effects of preheating temperatures on β‐lactoglobulin structure and binding interaction with dihydromyricetin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20preheating%20temperatures%20on%20%CE%B2%E2%80%90lactoglobulin%20structure%20and%20binding%20interaction%20with%20dihydromyricetin&rft.jtitle=eFood%20(Amsterdam)&rft.au=Zhang,%20Wenyuan&rft.date=2022-10&rft.volume=3&rft.issue=5&rft.epage=n/a&rft.issn=2666-3066&rft.eissn=2666-3066&rft_id=info:doi/10.1002/efd2.30&rft_dat=%3Cproquest_doaj_%3E3112452017%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3880-a9ef76cf11d2cfcfd2de62e9de9597fd5cf7fea66b360c8e959116eb704b75743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112452017&rft_id=info:pmid/&rfr_iscdi=true