Loading…
A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model
Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rate...
Saved in:
Published in: | Applied sciences 2020-01, Vol.10 (2), p.649 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13 |
container_end_page | |
container_issue | 2 |
container_start_page | 649 |
container_title | Applied sciences |
container_volume | 10 |
creator | Wang, Yuzhu Zhao, Yuan Jiang, Jinrong Zhang, He |
description | Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×. |
doi_str_mv | 10.3390/app10020649 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a23b130cdb0f4ecdbf9f9081f61060c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a23b130cdb0f4ecdbf9f9081f61060c0</doaj_id><sourcerecordid>2468793948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</originalsourceid><addsrcrecordid>eNpNUdFKAzEQPETBUvvkDwR8lNPNJeaSx1q0FqoWaZ_DXi6pV66XM7lW_HtPK9J9mWEZZmeZJLmkcMOYgltsWwqQgeDqJBlkkIuUcZqfHvHzZBTjBvpRlEkKg2QxJi9-b2syXazSe4y2JGNjbG0DdpVvyLhe-1B171vifCBI5r5Zf-Lekjcsq17Ss2XAJjobyLMvbX2RnDmsox394TBZPT4sJ0_p_HU6m4znqWGCdylyVoCwCoAxilBa65hSFAWX0txJVKp_A0qT5-gkFdJyx3OKjhWZc9xQNkxmB9_S40a3odpi-NIeK_278GGtMXSVqa3GjBWUgSkLcNz24JRTIKkTFAQY6L2uDl5t8B87Gzu98bvQ9PF1xoXMFVNc9qrrg8oEH2Ow7v8qBf3TgD5qgH0DmOF2xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468793948</pqid></control><display><type>article</type><title>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</title><source>Publicly Available Content Database</source><creator>Wang, Yuzhu ; Zhao, Yuan ; Jiang, Jinrong ; Zhang, He</creator><creatorcontrib>Wang, Yuzhu ; Zhao, Yuan ; Jiang, Jinrong ; Zhang, He</creatorcontrib><description>Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10020649</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Atmospheric circulation ; Central processing units ; Climate models ; Climate system ; compute unified device architecture ; Cooling ; CPUs ; Efficiency ; Fluxes ; General circulation models ; graphics processing unit ; Graphics processing units ; high performance computing ; Long wave radiation ; Meteorological satellites ; Programming languages ; Radiation ; radiation transfer ; Radiative transfer</subject><ispartof>Applied sciences, 2020-01, Vol.10 (2), p.649</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</citedby><cites>FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</cites><orcidid>0000-0001-7222-9072 ; 0000-0003-0449-2973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2468793948/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2468793948?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Jiang, Jinrong</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><title>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</title><title>Applied sciences</title><description>Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Atmospheric circulation</subject><subject>Central processing units</subject><subject>Climate models</subject><subject>Climate system</subject><subject>compute unified device architecture</subject><subject>Cooling</subject><subject>CPUs</subject><subject>Efficiency</subject><subject>Fluxes</subject><subject>General circulation models</subject><subject>graphics processing unit</subject><subject>Graphics processing units</subject><subject>high performance computing</subject><subject>Long wave radiation</subject><subject>Meteorological satellites</subject><subject>Programming languages</subject><subject>Radiation</subject><subject>radiation transfer</subject><subject>Radiative transfer</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFKAzEQPETBUvvkDwR8lNPNJeaSx1q0FqoWaZ_DXi6pV66XM7lW_HtPK9J9mWEZZmeZJLmkcMOYgltsWwqQgeDqJBlkkIuUcZqfHvHzZBTjBvpRlEkKg2QxJi9-b2syXazSe4y2JGNjbG0DdpVvyLhe-1B171vifCBI5r5Zf-Lekjcsq17Ss2XAJjobyLMvbX2RnDmsox394TBZPT4sJ0_p_HU6m4znqWGCdylyVoCwCoAxilBa65hSFAWX0txJVKp_A0qT5-gkFdJyx3OKjhWZc9xQNkxmB9_S40a3odpi-NIeK_278GGtMXSVqa3GjBWUgSkLcNz24JRTIKkTFAQY6L2uDl5t8B87Gzu98bvQ9PF1xoXMFVNc9qrrg8oEH2Ow7v8qBf3TgD5qgH0DmOF2xw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Yuzhu</creator><creator>Zhao, Yuan</creator><creator>Jiang, Jinrong</creator><creator>Zhang, He</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7222-9072</orcidid><orcidid>https://orcid.org/0000-0003-0449-2973</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</title><author>Wang, Yuzhu ; Zhao, Yuan ; Jiang, Jinrong ; Zhang, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Atmospheric circulation</topic><topic>Central processing units</topic><topic>Climate models</topic><topic>Climate system</topic><topic>compute unified device architecture</topic><topic>Cooling</topic><topic>CPUs</topic><topic>Efficiency</topic><topic>Fluxes</topic><topic>General circulation models</topic><topic>graphics processing unit</topic><topic>Graphics processing units</topic><topic>high performance computing</topic><topic>Long wave radiation</topic><topic>Meteorological satellites</topic><topic>Programming languages</topic><topic>Radiation</topic><topic>radiation transfer</topic><topic>Radiative transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Jiang, Jinrong</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuzhu</au><au>Zhao, Yuan</au><au>Jiang, Jinrong</au><au>Zhang, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</atitle><jtitle>Applied sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>649</spage><pages>649-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10020649</doi><orcidid>https://orcid.org/0000-0001-7222-9072</orcidid><orcidid>https://orcid.org/0000-0003-0449-2973</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-01, Vol.10 (2), p.649 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a23b130cdb0f4ecdbf9f9081f61060c0 |
source | Publicly Available Content Database |
subjects | Accuracy Algorithms Atmospheric circulation Central processing units Climate models Climate system compute unified device architecture Cooling CPUs Efficiency Fluxes General circulation models graphics processing unit Graphics processing units high performance computing Long wave radiation Meteorological satellites Programming languages Radiation radiation transfer Radiative transfer |
title | A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20GPU-Based%20Acceleration%20Algorithm%20for%20a%20Longwave%20Radiative%20Transfer%20Model&rft.jtitle=Applied%20sciences&rft.au=Wang,%20Yuzhu&rft.date=2020-01-01&rft.volume=10&rft.issue=2&rft.spage=649&rft.pages=649-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10020649&rft_dat=%3Cproquest_doaj_%3E2468793948%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468793948&rft_id=info:pmid/&rfr_iscdi=true |