Loading…

A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model

Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rate...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-01, Vol.10 (2), p.649
Main Authors: Wang, Yuzhu, Zhao, Yuan, Jiang, Jinrong, Zhang, He
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13
cites cdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13
container_end_page
container_issue 2
container_start_page 649
container_title Applied sciences
container_volume 10
creator Wang, Yuzhu
Zhao, Yuan
Jiang, Jinrong
Zhang, He
description Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×.
doi_str_mv 10.3390/app10020649
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a23b130cdb0f4ecdbf9f9081f61060c0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a23b130cdb0f4ecdbf9f9081f61060c0</doaj_id><sourcerecordid>2468793948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</originalsourceid><addsrcrecordid>eNpNUdFKAzEQPETBUvvkDwR8lNPNJeaSx1q0FqoWaZ_DXi6pV66XM7lW_HtPK9J9mWEZZmeZJLmkcMOYgltsWwqQgeDqJBlkkIuUcZqfHvHzZBTjBvpRlEkKg2QxJi9-b2syXazSe4y2JGNjbG0DdpVvyLhe-1B171vifCBI5r5Zf-Lekjcsq17Ss2XAJjobyLMvbX2RnDmsox394TBZPT4sJ0_p_HU6m4znqWGCdylyVoCwCoAxilBa65hSFAWX0txJVKp_A0qT5-gkFdJyx3OKjhWZc9xQNkxmB9_S40a3odpi-NIeK_278GGtMXSVqa3GjBWUgSkLcNz24JRTIKkTFAQY6L2uDl5t8B87Gzu98bvQ9PF1xoXMFVNc9qrrg8oEH2Ow7v8qBf3TgD5qgH0DmOF2xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468793948</pqid></control><display><type>article</type><title>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</title><source>Publicly Available Content Database</source><creator>Wang, Yuzhu ; Zhao, Yuan ; Jiang, Jinrong ; Zhang, He</creator><creatorcontrib>Wang, Yuzhu ; Zhao, Yuan ; Jiang, Jinrong ; Zhang, He</creatorcontrib><description>Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10020649</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Atmospheric circulation ; Central processing units ; Climate models ; Climate system ; compute unified device architecture ; Cooling ; CPUs ; Efficiency ; Fluxes ; General circulation models ; graphics processing unit ; Graphics processing units ; high performance computing ; Long wave radiation ; Meteorological satellites ; Programming languages ; Radiation ; radiation transfer ; Radiative transfer</subject><ispartof>Applied sciences, 2020-01, Vol.10 (2), p.649</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</citedby><cites>FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</cites><orcidid>0000-0001-7222-9072 ; 0000-0003-0449-2973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2468793948/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2468793948?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Jiang, Jinrong</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><title>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</title><title>Applied sciences</title><description>Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Atmospheric circulation</subject><subject>Central processing units</subject><subject>Climate models</subject><subject>Climate system</subject><subject>compute unified device architecture</subject><subject>Cooling</subject><subject>CPUs</subject><subject>Efficiency</subject><subject>Fluxes</subject><subject>General circulation models</subject><subject>graphics processing unit</subject><subject>Graphics processing units</subject><subject>high performance computing</subject><subject>Long wave radiation</subject><subject>Meteorological satellites</subject><subject>Programming languages</subject><subject>Radiation</subject><subject>radiation transfer</subject><subject>Radiative transfer</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFKAzEQPETBUvvkDwR8lNPNJeaSx1q0FqoWaZ_DXi6pV66XM7lW_HtPK9J9mWEZZmeZJLmkcMOYgltsWwqQgeDqJBlkkIuUcZqfHvHzZBTjBvpRlEkKg2QxJi9-b2syXazSe4y2JGNjbG0DdpVvyLhe-1B171vifCBI5r5Zf-Lekjcsq17Ss2XAJjobyLMvbX2RnDmsox394TBZPT4sJ0_p_HU6m4znqWGCdylyVoCwCoAxilBa65hSFAWX0txJVKp_A0qT5-gkFdJyx3OKjhWZc9xQNkxmB9_S40a3odpi-NIeK_278GGtMXSVqa3GjBWUgSkLcNz24JRTIKkTFAQY6L2uDl5t8B87Gzu98bvQ9PF1xoXMFVNc9qrrg8oEH2Ow7v8qBf3TgD5qgH0DmOF2xw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wang, Yuzhu</creator><creator>Zhao, Yuan</creator><creator>Jiang, Jinrong</creator><creator>Zhang, He</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7222-9072</orcidid><orcidid>https://orcid.org/0000-0003-0449-2973</orcidid></search><sort><creationdate>20200101</creationdate><title>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</title><author>Wang, Yuzhu ; Zhao, Yuan ; Jiang, Jinrong ; Zhang, He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Atmospheric circulation</topic><topic>Central processing units</topic><topic>Climate models</topic><topic>Climate system</topic><topic>compute unified device architecture</topic><topic>Cooling</topic><topic>CPUs</topic><topic>Efficiency</topic><topic>Fluxes</topic><topic>General circulation models</topic><topic>graphics processing unit</topic><topic>Graphics processing units</topic><topic>high performance computing</topic><topic>Long wave radiation</topic><topic>Meteorological satellites</topic><topic>Programming languages</topic><topic>Radiation</topic><topic>radiation transfer</topic><topic>Radiative transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuzhu</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Jiang, Jinrong</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuzhu</au><au>Zhao, Yuan</au><au>Jiang, Jinrong</au><au>Zhang, He</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model</atitle><jtitle>Applied sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>649</spage><pages>649-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Graphics processing unit (GPU)-based computing for climate system models is a longstanding research area of interest. The rapid radiative transfer model for general circulation models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW). The algorithm concept is accelerating the RRTMG_LW in the g- p o i n t dimension. After implementing the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup of 2.35×.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10020649</doi><orcidid>https://orcid.org/0000-0001-7222-9072</orcidid><orcidid>https://orcid.org/0000-0003-0449-2973</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-01, Vol.10 (2), p.649
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a23b130cdb0f4ecdbf9f9081f61060c0
source Publicly Available Content Database
subjects Accuracy
Algorithms
Atmospheric circulation
Central processing units
Climate models
Climate system
compute unified device architecture
Cooling
CPUs
Efficiency
Fluxes
General circulation models
graphics processing unit
Graphics processing units
high performance computing
Long wave radiation
Meteorological satellites
Programming languages
Radiation
radiation transfer
Radiative transfer
title A Novel GPU-Based Acceleration Algorithm for a Longwave Radiative Transfer Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20GPU-Based%20Acceleration%20Algorithm%20for%20a%20Longwave%20Radiative%20Transfer%20Model&rft.jtitle=Applied%20sciences&rft.au=Wang,%20Yuzhu&rft.date=2020-01-01&rft.volume=10&rft.issue=2&rft.spage=649&rft.pages=649-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10020649&rft_dat=%3Cproquest_doaj_%3E2468793948%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-a43b06e900331a0deef3991a6488c58a996490dc77af8168e4f471af3b2ff4c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468793948&rft_id=info:pmid/&rfr_iscdi=true