Loading…

Insight into Crystalline Structure and Physicochemical Properties of Quartz-Carbon Ore

Composites made from carbon and nanominerals show great potential for thermal phase change materials, environmental water treatment, and biomass conversion. In 2019, a micro and nano-quartz-carbon ore was discovered in Feng-cheng City, Jiangxi Province. The study of the structural and physicochemica...

Full description

Saved in:
Bibliographic Details
Published in:Minerals (Basel) 2023-11, Vol.13 (12), p.1488
Main Authors: Liu, Xi, Zhao, Xiaoguang, Wang, Xianguang, Tang, Yili, Liao, Juan, Wu, Qianwen, Wang, Jie, Zhang, Jun, Yang, Huaming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Composites made from carbon and nanominerals show great potential for thermal phase change materials, environmental water treatment, and biomass conversion. In 2019, a micro and nano-quartz-carbon ore was discovered in Feng-cheng City, Jiangxi Province. The study of the structural and physicochemical changes of quartz-carbon ore (QZC) during calcination is essential for the preparation of QZC-based composites and to broaden their application areas. Firstly, the SiO2 crystal structure evolution of QZC during calcination was investigated using in-situ X-ray diffraction (XRD), 29Si magic-angle sample spinning nuclear magnetic resonance (MAS NMR), and Fourier transform infrared FTIR spectroscopy. Then, the changes in carbon during calcination were investigated using Raman spectroscopy, 13C MAS NMR, and X-ray photoelectron spectroscopy (XPS). In addition, changes in the QZC morphology were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Finally, the evolution of the physicochemical properties of QZC during calcination was revealed using thermogravimetric (TG), Brunauer–Emmet–Teller (BET), resistivity, thermal conductivity, and zeta potential techniques.
ISSN:2075-163X
2075-163X
DOI:10.3390/min13121488