Loading…
Gromov Hyperbolicity in Mycielskian Graphs
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM) . Furthermore, we study...
Saved in:
Published in: | Symmetry (Basel) 2017-08, Vol.9 (8), p.131 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-ec26853c0e92310801e0de87059f459873518d8b7b10c3a1e38c532dba175b223 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-ec26853c0e92310801e0de87059f459873518d8b7b10c3a1e38c532dba175b223 |
container_end_page | |
container_issue | 8 |
container_start_page | 131 |
container_title | Symmetry (Basel) |
container_volume | 9 |
creator | Granados, Ana Pestana, Domingo Portilla, Ana Rodríguez, José |
description | Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM) . Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4≤δ(GM)≤5/2 . Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on δ(G) just in terms of δ(GM) is obtained. |
doi_str_mv | 10.3390/sym9080131 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a2853f0785fc4c478718f56d2cf535b4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a2853f0785fc4c478718f56d2cf535b4</doaj_id><sourcerecordid>1939737170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ec26853c0e92310801e0de87059f459873518d8b7b10c3a1e38c532dba175b223</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWGov_oIFb4XVSWazSY5StBUqXvQcstmspm6bNdkK--_dWlHnMsPw-N7jEXJJ4RpRwU0atgokUKQnZMJAYC6VKk7_3edkltIGxuHAixImZL6MYRs-s9XQuViF1lvfD5nfZY-D9a5N797ssmU03Vu6IGeNaZOb_ewpebm_e16s8vXT8mFxu84tlrTPnWWl5GjBKYb0kMdB7aQArpqCKymQU1nLSlQULBrqUFqOrK4MFbxiDKfk4citg9noLvqtiYMOxuvvR4iv2sTe29Zpw0anBoTkjS1sIaSgsuFlzWzDkVfFyLo6sroYPvYu9XoT9nE3xtdUoRIoqIBRNT-qbAwpRdf8ulLQh2r1X7X4BU7maHU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939737170</pqid></control><display><type>article</type><title>Gromov Hyperbolicity in Mycielskian Graphs</title><source>Publicly Available Content Database</source><creator>Granados, Ana ; Pestana, Domingo ; Portilla, Ana ; Rodríguez, José</creator><creatorcontrib>Granados, Ana ; Pestana, Domingo ; Portilla, Ana ; Rodríguez, José</creatorcontrib><description>Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM) . Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4≤δ(GM)≤5/2 . Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on δ(G) just in terms of δ(GM) is obtained.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym9080131</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>extremal problems on graphs ; geodesics ; Graphs ; Gromov hyperbolicity ; Mycielskian graphs</subject><ispartof>Symmetry (Basel), 2017-08, Vol.9 (8), p.131</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ec26853c0e92310801e0de87059f459873518d8b7b10c3a1e38c532dba175b223</citedby><cites>FETCH-LOGICAL-c361t-ec26853c0e92310801e0de87059f459873518d8b7b10c3a1e38c532dba175b223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1939737170/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1939737170?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Granados, Ana</creatorcontrib><creatorcontrib>Pestana, Domingo</creatorcontrib><creatorcontrib>Portilla, Ana</creatorcontrib><creatorcontrib>Rodríguez, José</creatorcontrib><title>Gromov Hyperbolicity in Mycielskian Graphs</title><title>Symmetry (Basel)</title><description>Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM) . Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4≤δ(GM)≤5/2 . Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on δ(G) just in terms of δ(GM) is obtained.</description><subject>extremal problems on graphs</subject><subject>geodesics</subject><subject>Graphs</subject><subject>Gromov hyperbolicity</subject><subject>Mycielskian graphs</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEFLAzEQhYMoWGov_oIFb4XVSWazSY5StBUqXvQcstmspm6bNdkK--_dWlHnMsPw-N7jEXJJ4RpRwU0atgokUKQnZMJAYC6VKk7_3edkltIGxuHAixImZL6MYRs-s9XQuViF1lvfD5nfZY-D9a5N797ssmU03Vu6IGeNaZOb_ewpebm_e16s8vXT8mFxu84tlrTPnWWl5GjBKYb0kMdB7aQArpqCKymQU1nLSlQULBrqUFqOrK4MFbxiDKfk4citg9noLvqtiYMOxuvvR4iv2sTe29Zpw0anBoTkjS1sIaSgsuFlzWzDkVfFyLo6sroYPvYu9XoT9nE3xtdUoRIoqIBRNT-qbAwpRdf8ulLQh2r1X7X4BU7maHU</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Granados, Ana</creator><creator>Pestana, Domingo</creator><creator>Portilla, Ana</creator><creator>Rodríguez, José</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20170801</creationdate><title>Gromov Hyperbolicity in Mycielskian Graphs</title><author>Granados, Ana ; Pestana, Domingo ; Portilla, Ana ; Rodríguez, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ec26853c0e92310801e0de87059f459873518d8b7b10c3a1e38c532dba175b223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>extremal problems on graphs</topic><topic>geodesics</topic><topic>Graphs</topic><topic>Gromov hyperbolicity</topic><topic>Mycielskian graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granados, Ana</creatorcontrib><creatorcontrib>Pestana, Domingo</creatorcontrib><creatorcontrib>Portilla, Ana</creatorcontrib><creatorcontrib>Rodríguez, José</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granados, Ana</au><au>Pestana, Domingo</au><au>Portilla, Ana</au><au>Rodríguez, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gromov Hyperbolicity in Mycielskian Graphs</atitle><jtitle>Symmetry (Basel)</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>9</volume><issue>8</issue><spage>131</spage><pages>131-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM) . Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4≤δ(GM)≤5/2 . Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on δ(G) just in terms of δ(GM) is obtained.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym9080131</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2017-08, Vol.9 (8), p.131 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a2853f0785fc4c478718f56d2cf535b4 |
source | Publicly Available Content Database |
subjects | extremal problems on graphs geodesics Graphs Gromov hyperbolicity Mycielskian graphs |
title | Gromov Hyperbolicity in Mycielskian Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A16%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gromov%20Hyperbolicity%20in%20Mycielskian%20Graphs&rft.jtitle=Symmetry%20(Basel)&rft.au=Granados,%20Ana&rft.date=2017-08-01&rft.volume=9&rft.issue=8&rft.spage=131&rft.pages=131-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym9080131&rft_dat=%3Cproquest_doaj_%3E1939737170%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-ec26853c0e92310801e0de87059f459873518d8b7b10c3a1e38c532dba175b223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1939737170&rft_id=info:pmid/&rfr_iscdi=true |