Loading…

Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity

Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) CA), 2017-10, Vol.5, p.e3923-e3923, Article e3923
Main Authors: Hollergschwandtner, Elena, Schwaha, Thomas, Neumüller, Josef, Kaindl, Ulrich, Gruber, Daniela, Eckhard, Margret, Stöger-Pollach, Michael, Reipert, Siegfried
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3
cites cdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3
container_end_page e3923
container_issue
container_start_page e3923
container_title PeerJ (San Francisco, CA)
container_volume 5
creator Hollergschwandtner, Elena
Schwaha, Thomas
Neumüller, Josef
Kaindl, Ulrich
Gruber, Daniela
Eckhard, Margret
Stöger-Pollach, Michael
Reipert, Siegfried
description Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis require understanding the principles of their self-assembly . One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of . Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. The ovisac lining of is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of . In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing as feed for fish farming. We propose ovisacs as an model system for studying mesostructure formation.
doi_str_mv 10.7717/peerj.3923
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a29934632d74489fa073c5eb3f06b3d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511698690</galeid><doaj_id>oai_doaj_org_article_a29934632d74489fa073c5eb3f06b3d8</doaj_id><sourcerecordid>A511698690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</originalsourceid><addsrcrecordid>eNptkl2PEyEUhidG427q3vgDDImJMSatAwwM3Jg0Gz822eiNXhOGj5aGgQpMzf57me26tka44ASe8x44vE3zErarvof9-70xabfCHOEnzSWCtF8yTPjTk_iiucp519bBEG0Zft5cIN5yzDm5bPzXeDAejCbHXNKkypSMBi4oP2UXQ64hKFsDzN5pk0bpgXfBhQ2IFqxTMaOTwCYZlMtKBgniwWWpMsjb-AvEfXGqpkhV3MGVuxfNMyt9NlcP66L58enj9-svy9tvn2-u17dLRfq2LDvbI4og0YpJbrlmGBMmNYHEQgsR6tigLYJYU84HqaRVWtFhwJzBoYNG4UVzc9TVUe7EPrlRpjsRpRP3GzFthEz1at4IiTjHHcVI913HuJVtjxUxA7YtHXAtvWg-HLX20zAarUwoSfoz0fOT4LZiEw-CUAo7yqvA2weBFH9OJhcx1l4Z72UwccoCcsIx6lrWV_T1P-guTinUVs0U7RCDPftLbWR9gAs21rpqFhVrAiHljPK2Uqv_UHXq-mcqBmNd3T9LeHOSsDXSl22OfiqzDc7Bd0dQpZhzMvaxGbAVsyfFvSfF7MkKvzpt3yP6x4H4Nz6V3VI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956428178</pqid></control><display><type>article</type><title>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Hollergschwandtner, Elena ; Schwaha, Thomas ; Neumüller, Josef ; Kaindl, Ulrich ; Gruber, Daniela ; Eckhard, Margret ; Stöger-Pollach, Michael ; Reipert, Siegfried</creator><creatorcontrib>Hollergschwandtner, Elena ; Schwaha, Thomas ; Neumüller, Josef ; Kaindl, Ulrich ; Gruber, Daniela ; Eckhard, Margret ; Stöger-Pollach, Michael ; Reipert, Siegfried</creatorcontrib><description>Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis require understanding the principles of their self-assembly . One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of . Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. The ovisac lining of is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of . In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing as feed for fish farming. We propose ovisacs as an model system for studying mesostructure formation.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.3923</identifier><identifier>PMID: 29093995</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Analysis ; Aquaculture, Fisheries and Fish Science ; Artemia ; Artemia franciscana ; Biomineralization ; Biopolymers ; Branchiopods ; Brine shrimps ; Carbohydrates ; Cell Biology ; Confocal reflection microscopy ; Crustacea ; Crystallization ; Crystals ; Cysts ; Eggs ; Electron diffraction ; Electron microscopy ; Fish ; Freezing ; Histology ; Intracellular ; Laboratories ; Light ; Marine Biology ; Medical imaging ; Mineralization ; Molecular biology ; Optical properties ; Ovisac ; Physiological aspects ; Properties ; Rapid freeze substitution ; Reproduction ; Self-assembly ; Structure ; Studies ; Zoology</subject><ispartof>PeerJ (San Francisco, CA), 2017-10, Vol.5, p.e3923-e3923, Article e3923</ispartof><rights>COPYRIGHT 2017 PeerJ. Ltd.</rights><rights>2017 Hollergschwandtner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Hollergschwandtner et al. 2017 Hollergschwandtner et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</citedby><cites>FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1956428178/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1956428178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29093995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollergschwandtner, Elena</creatorcontrib><creatorcontrib>Schwaha, Thomas</creatorcontrib><creatorcontrib>Neumüller, Josef</creatorcontrib><creatorcontrib>Kaindl, Ulrich</creatorcontrib><creatorcontrib>Gruber, Daniela</creatorcontrib><creatorcontrib>Eckhard, Margret</creatorcontrib><creatorcontrib>Stöger-Pollach, Michael</creatorcontrib><creatorcontrib>Reipert, Siegfried</creatorcontrib><title>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</title><title>PeerJ (San Francisco, CA)</title><addtitle>PeerJ</addtitle><description>Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis require understanding the principles of their self-assembly . One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of . Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. The ovisac lining of is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of . In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing as feed for fish farming. We propose ovisacs as an model system for studying mesostructure formation.</description><subject>Analysis</subject><subject>Aquaculture, Fisheries and Fish Science</subject><subject>Artemia</subject><subject>Artemia franciscana</subject><subject>Biomineralization</subject><subject>Biopolymers</subject><subject>Branchiopods</subject><subject>Brine shrimps</subject><subject>Carbohydrates</subject><subject>Cell Biology</subject><subject>Confocal reflection microscopy</subject><subject>Crustacea</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Cysts</subject><subject>Eggs</subject><subject>Electron diffraction</subject><subject>Electron microscopy</subject><subject>Fish</subject><subject>Freezing</subject><subject>Histology</subject><subject>Intracellular</subject><subject>Laboratories</subject><subject>Light</subject><subject>Marine Biology</subject><subject>Medical imaging</subject><subject>Mineralization</subject><subject>Molecular biology</subject><subject>Optical properties</subject><subject>Ovisac</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Rapid freeze substitution</subject><subject>Reproduction</subject><subject>Self-assembly</subject><subject>Structure</subject><subject>Studies</subject><subject>Zoology</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2PEyEUhidG427q3vgDDImJMSatAwwM3Jg0Gz822eiNXhOGj5aGgQpMzf57me26tka44ASe8x44vE3zErarvof9-70xabfCHOEnzSWCtF8yTPjTk_iiucp519bBEG0Zft5cIN5yzDm5bPzXeDAejCbHXNKkypSMBi4oP2UXQ64hKFsDzN5pk0bpgXfBhQ2IFqxTMaOTwCYZlMtKBgniwWWpMsjb-AvEfXGqpkhV3MGVuxfNMyt9NlcP66L58enj9-svy9tvn2-u17dLRfq2LDvbI4og0YpJbrlmGBMmNYHEQgsR6tigLYJYU84HqaRVWtFhwJzBoYNG4UVzc9TVUe7EPrlRpjsRpRP3GzFthEz1at4IiTjHHcVI913HuJVtjxUxA7YtHXAtvWg-HLX20zAarUwoSfoz0fOT4LZiEw-CUAo7yqvA2weBFH9OJhcx1l4Z72UwccoCcsIx6lrWV_T1P-guTinUVs0U7RCDPftLbWR9gAs21rpqFhVrAiHljPK2Uqv_UHXq-mcqBmNd3T9LeHOSsDXSl22OfiqzDc7Bd0dQpZhzMvaxGbAVsyfFvSfF7MkKvzpt3yP6x4H4Nz6V3VI</recordid><startdate>20171027</startdate><enddate>20171027</enddate><creator>Hollergschwandtner, Elena</creator><creator>Schwaha, Thomas</creator><creator>Neumüller, Josef</creator><creator>Kaindl, Ulrich</creator><creator>Gruber, Daniela</creator><creator>Eckhard, Margret</creator><creator>Stöger-Pollach, Michael</creator><creator>Reipert, Siegfried</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20171027</creationdate><title>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</title><author>Hollergschwandtner, Elena ; Schwaha, Thomas ; Neumüller, Josef ; Kaindl, Ulrich ; Gruber, Daniela ; Eckhard, Margret ; Stöger-Pollach, Michael ; Reipert, Siegfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Aquaculture, Fisheries and Fish Science</topic><topic>Artemia</topic><topic>Artemia franciscana</topic><topic>Biomineralization</topic><topic>Biopolymers</topic><topic>Branchiopods</topic><topic>Brine shrimps</topic><topic>Carbohydrates</topic><topic>Cell Biology</topic><topic>Confocal reflection microscopy</topic><topic>Crustacea</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Cysts</topic><topic>Eggs</topic><topic>Electron diffraction</topic><topic>Electron microscopy</topic><topic>Fish</topic><topic>Freezing</topic><topic>Histology</topic><topic>Intracellular</topic><topic>Laboratories</topic><topic>Light</topic><topic>Marine Biology</topic><topic>Medical imaging</topic><topic>Mineralization</topic><topic>Molecular biology</topic><topic>Optical properties</topic><topic>Ovisac</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Rapid freeze substitution</topic><topic>Reproduction</topic><topic>Self-assembly</topic><topic>Structure</topic><topic>Studies</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollergschwandtner, Elena</creatorcontrib><creatorcontrib>Schwaha, Thomas</creatorcontrib><creatorcontrib>Neumüller, Josef</creatorcontrib><creatorcontrib>Kaindl, Ulrich</creatorcontrib><creatorcontrib>Gruber, Daniela</creatorcontrib><creatorcontrib>Eckhard, Margret</creatorcontrib><creatorcontrib>Stöger-Pollach, Michael</creatorcontrib><creatorcontrib>Reipert, Siegfried</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollergschwandtner, Elena</au><au>Schwaha, Thomas</au><au>Neumüller, Josef</au><au>Kaindl, Ulrich</au><au>Gruber, Daniela</au><au>Eckhard, Margret</au><au>Stöger-Pollach, Michael</au><au>Reipert, Siegfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><addtitle>PeerJ</addtitle><date>2017-10-27</date><risdate>2017</risdate><volume>5</volume><spage>e3923</spage><epage>e3923</epage><pages>e3923-e3923</pages><artnum>e3923</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis require understanding the principles of their self-assembly . One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into (Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures. EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of . Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly. The ovisac lining of is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of . In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing as feed for fish farming. We propose ovisacs as an model system for studying mesostructure formation.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>29093995</pmid><doi>10.7717/peerj.3923</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-8359
ispartof PeerJ (San Francisco, CA), 2017-10, Vol.5, p.e3923-e3923, Article e3923
issn 2167-8359
2167-8359
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a29934632d74489fa073c5eb3f06b3d8
source Publicly Available Content (ProQuest); PubMed Central
subjects Analysis
Aquaculture, Fisheries and Fish Science
Artemia
Artemia franciscana
Biomineralization
Biopolymers
Branchiopods
Brine shrimps
Carbohydrates
Cell Biology
Confocal reflection microscopy
Crustacea
Crystallization
Crystals
Cysts
Eggs
Electron diffraction
Electron microscopy
Fish
Freezing
Histology
Intracellular
Laboratories
Light
Marine Biology
Medical imaging
Mineralization
Molecular biology
Optical properties
Ovisac
Physiological aspects
Properties
Rapid freeze substitution
Reproduction
Self-assembly
Structure
Studies
Zoology
title Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20mesostructured%20inclusions%20in%20the%20epidermal%20lining%20of%20Artemia%20franciscana%20ovisacs%20show%20optical%20activity&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Hollergschwandtner,%20Elena&rft.date=2017-10-27&rft.volume=5&rft.spage=e3923&rft.epage=e3923&rft.pages=e3923-e3923&rft.artnum=e3923&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.3923&rft_dat=%3Cgale_doaj_%3EA511698690%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956428178&rft_id=info:pmid/29093995&rft_galeid=A511698690&rfr_iscdi=true