Loading…
Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity
Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current...
Saved in:
Published in: | PeerJ (San Francisco, CA) CA), 2017-10, Vol.5, p.e3923-e3923, Article e3923 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3 |
container_end_page | e3923 |
container_issue | |
container_start_page | e3923 |
container_title | PeerJ (San Francisco, CA) |
container_volume | 5 |
creator | Hollergschwandtner, Elena Schwaha, Thomas Neumüller, Josef Kaindl, Ulrich Gruber, Daniela Eckhard, Margret Stöger-Pollach, Michael Reipert, Siegfried |
description | Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis
require understanding the principles of their self-assembly
. One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into
(Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures.
EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of
. Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly.
The ovisac lining of
is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of
. In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing
as feed for fish farming. We propose
ovisacs as an
model system for studying mesostructure formation. |
doi_str_mv | 10.7717/peerj.3923 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a29934632d74489fa073c5eb3f06b3d8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511698690</galeid><doaj_id>oai_doaj_org_article_a29934632d74489fa073c5eb3f06b3d8</doaj_id><sourcerecordid>A511698690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</originalsourceid><addsrcrecordid>eNptkl2PEyEUhidG427q3vgDDImJMSatAwwM3Jg0Gz822eiNXhOGj5aGgQpMzf57me26tka44ASe8x44vE3zErarvof9-70xabfCHOEnzSWCtF8yTPjTk_iiucp519bBEG0Zft5cIN5yzDm5bPzXeDAejCbHXNKkypSMBi4oP2UXQ64hKFsDzN5pk0bpgXfBhQ2IFqxTMaOTwCYZlMtKBgniwWWpMsjb-AvEfXGqpkhV3MGVuxfNMyt9NlcP66L58enj9-svy9tvn2-u17dLRfq2LDvbI4og0YpJbrlmGBMmNYHEQgsR6tigLYJYU84HqaRVWtFhwJzBoYNG4UVzc9TVUe7EPrlRpjsRpRP3GzFthEz1at4IiTjHHcVI913HuJVtjxUxA7YtHXAtvWg-HLX20zAarUwoSfoz0fOT4LZiEw-CUAo7yqvA2weBFH9OJhcx1l4Z72UwccoCcsIx6lrWV_T1P-guTinUVs0U7RCDPftLbWR9gAs21rpqFhVrAiHljPK2Uqv_UHXq-mcqBmNd3T9LeHOSsDXSl22OfiqzDc7Bd0dQpZhzMvaxGbAVsyfFvSfF7MkKvzpt3yP6x4H4Nz6V3VI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956428178</pqid></control><display><type>article</type><title>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Hollergschwandtner, Elena ; Schwaha, Thomas ; Neumüller, Josef ; Kaindl, Ulrich ; Gruber, Daniela ; Eckhard, Margret ; Stöger-Pollach, Michael ; Reipert, Siegfried</creator><creatorcontrib>Hollergschwandtner, Elena ; Schwaha, Thomas ; Neumüller, Josef ; Kaindl, Ulrich ; Gruber, Daniela ; Eckhard, Margret ; Stöger-Pollach, Michael ; Reipert, Siegfried</creatorcontrib><description>Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis
require understanding the principles of their self-assembly
. One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into
(Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures.
EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of
. Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly.
The ovisac lining of
is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of
. In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing
as feed for fish farming. We propose
ovisacs as an
model system for studying mesostructure formation.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.3923</identifier><identifier>PMID: 29093995</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Analysis ; Aquaculture, Fisheries and Fish Science ; Artemia ; Artemia franciscana ; Biomineralization ; Biopolymers ; Branchiopods ; Brine shrimps ; Carbohydrates ; Cell Biology ; Confocal reflection microscopy ; Crustacea ; Crystallization ; Crystals ; Cysts ; Eggs ; Electron diffraction ; Electron microscopy ; Fish ; Freezing ; Histology ; Intracellular ; Laboratories ; Light ; Marine Biology ; Medical imaging ; Mineralization ; Molecular biology ; Optical properties ; Ovisac ; Physiological aspects ; Properties ; Rapid freeze substitution ; Reproduction ; Self-assembly ; Structure ; Studies ; Zoology</subject><ispartof>PeerJ (San Francisco, CA), 2017-10, Vol.5, p.e3923-e3923, Article e3923</ispartof><rights>COPYRIGHT 2017 PeerJ. Ltd.</rights><rights>2017 Hollergschwandtner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Hollergschwandtner et al. 2017 Hollergschwandtner et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</citedby><cites>FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1956428178/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1956428178?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29093995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hollergschwandtner, Elena</creatorcontrib><creatorcontrib>Schwaha, Thomas</creatorcontrib><creatorcontrib>Neumüller, Josef</creatorcontrib><creatorcontrib>Kaindl, Ulrich</creatorcontrib><creatorcontrib>Gruber, Daniela</creatorcontrib><creatorcontrib>Eckhard, Margret</creatorcontrib><creatorcontrib>Stöger-Pollach, Michael</creatorcontrib><creatorcontrib>Reipert, Siegfried</creatorcontrib><title>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</title><title>PeerJ (San Francisco, CA)</title><addtitle>PeerJ</addtitle><description>Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis
require understanding the principles of their self-assembly
. One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into
(Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures.
EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of
. Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly.
The ovisac lining of
is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of
. In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing
as feed for fish farming. We propose
ovisacs as an
model system for studying mesostructure formation.</description><subject>Analysis</subject><subject>Aquaculture, Fisheries and Fish Science</subject><subject>Artemia</subject><subject>Artemia franciscana</subject><subject>Biomineralization</subject><subject>Biopolymers</subject><subject>Branchiopods</subject><subject>Brine shrimps</subject><subject>Carbohydrates</subject><subject>Cell Biology</subject><subject>Confocal reflection microscopy</subject><subject>Crustacea</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Cysts</subject><subject>Eggs</subject><subject>Electron diffraction</subject><subject>Electron microscopy</subject><subject>Fish</subject><subject>Freezing</subject><subject>Histology</subject><subject>Intracellular</subject><subject>Laboratories</subject><subject>Light</subject><subject>Marine Biology</subject><subject>Medical imaging</subject><subject>Mineralization</subject><subject>Molecular biology</subject><subject>Optical properties</subject><subject>Ovisac</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Rapid freeze substitution</subject><subject>Reproduction</subject><subject>Self-assembly</subject><subject>Structure</subject><subject>Studies</subject><subject>Zoology</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2PEyEUhidG427q3vgDDImJMSatAwwM3Jg0Gz822eiNXhOGj5aGgQpMzf57me26tka44ASe8x44vE3zErarvof9-70xabfCHOEnzSWCtF8yTPjTk_iiucp519bBEG0Zft5cIN5yzDm5bPzXeDAejCbHXNKkypSMBi4oP2UXQ64hKFsDzN5pk0bpgXfBhQ2IFqxTMaOTwCYZlMtKBgniwWWpMsjb-AvEfXGqpkhV3MGVuxfNMyt9NlcP66L58enj9-svy9tvn2-u17dLRfq2LDvbI4og0YpJbrlmGBMmNYHEQgsR6tigLYJYU84HqaRVWtFhwJzBoYNG4UVzc9TVUe7EPrlRpjsRpRP3GzFthEz1at4IiTjHHcVI913HuJVtjxUxA7YtHXAtvWg-HLX20zAarUwoSfoz0fOT4LZiEw-CUAo7yqvA2weBFH9OJhcx1l4Z72UwccoCcsIx6lrWV_T1P-guTinUVs0U7RCDPftLbWR9gAs21rpqFhVrAiHljPK2Uqv_UHXq-mcqBmNd3T9LeHOSsDXSl22OfiqzDc7Bd0dQpZhzMvaxGbAVsyfFvSfF7MkKvzpt3yP6x4H4Nz6V3VI</recordid><startdate>20171027</startdate><enddate>20171027</enddate><creator>Hollergschwandtner, Elena</creator><creator>Schwaha, Thomas</creator><creator>Neumüller, Josef</creator><creator>Kaindl, Ulrich</creator><creator>Gruber, Daniela</creator><creator>Eckhard, Margret</creator><creator>Stöger-Pollach, Michael</creator><creator>Reipert, Siegfried</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20171027</creationdate><title>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</title><author>Hollergschwandtner, Elena ; Schwaha, Thomas ; Neumüller, Josef ; Kaindl, Ulrich ; Gruber, Daniela ; Eckhard, Margret ; Stöger-Pollach, Michael ; Reipert, Siegfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Aquaculture, Fisheries and Fish Science</topic><topic>Artemia</topic><topic>Artemia franciscana</topic><topic>Biomineralization</topic><topic>Biopolymers</topic><topic>Branchiopods</topic><topic>Brine shrimps</topic><topic>Carbohydrates</topic><topic>Cell Biology</topic><topic>Confocal reflection microscopy</topic><topic>Crustacea</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Cysts</topic><topic>Eggs</topic><topic>Electron diffraction</topic><topic>Electron microscopy</topic><topic>Fish</topic><topic>Freezing</topic><topic>Histology</topic><topic>Intracellular</topic><topic>Laboratories</topic><topic>Light</topic><topic>Marine Biology</topic><topic>Medical imaging</topic><topic>Mineralization</topic><topic>Molecular biology</topic><topic>Optical properties</topic><topic>Ovisac</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Rapid freeze substitution</topic><topic>Reproduction</topic><topic>Self-assembly</topic><topic>Structure</topic><topic>Studies</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hollergschwandtner, Elena</creatorcontrib><creatorcontrib>Schwaha, Thomas</creatorcontrib><creatorcontrib>Neumüller, Josef</creatorcontrib><creatorcontrib>Kaindl, Ulrich</creatorcontrib><creatorcontrib>Gruber, Daniela</creatorcontrib><creatorcontrib>Eckhard, Margret</creatorcontrib><creatorcontrib>Stöger-Pollach, Michael</creatorcontrib><creatorcontrib>Reipert, Siegfried</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hollergschwandtner, Elena</au><au>Schwaha, Thomas</au><au>Neumüller, Josef</au><au>Kaindl, Ulrich</au><au>Gruber, Daniela</au><au>Eckhard, Margret</au><au>Stöger-Pollach, Michael</au><au>Reipert, Siegfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><addtitle>PeerJ</addtitle><date>2017-10-27</date><risdate>2017</risdate><volume>5</volume><spage>e3923</spage><epage>e3923</epage><pages>e3923-e3923</pages><artnum>e3923</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>Biomineralization, e.g., in sea urchins or mollusks, includes the assembly of mesoscopic superstructures from inorganic crystalline components and biopolymers. The resulting mesocrystals inspire biophysicists and material scientists alike, because of their extraordinary physical properties. Current efforts to replicate mesocrystal synthesis
require understanding the principles of their self-assembly
. One question, not addressed so far, is whether intracellular crystals of proteins can assemble with biopolymers into functional mesocrystal-like structures. During our electron microscopy studies into
(Crustacea: Branchiopoda), we found initial evidence of such proteinaceous mesostructures.
EM preparations with high-pressure freezing and accelerated freeze substitution revealed an extraordinary intracellular source of mesostructured inclusions in both the cyto-and nucleoplasm of the epidermal lining of ovisacs of
. Confocal reflection microscopy not only confirmed our finding; it also revealed reflective, light dispersing activity of these flake-like structures, their positioning and orientation with respect to the ovisac inside. Both the striation of alternating electron dense and electron-lucent components and the sharp edges of the flakes indicate self-assembly of material of yet unknown origin under supposed participation of crystallization. However, selected area electron diffraction could not verify the status of crystallization. Energy dispersive X-ray analysis measured a marked increase in nitrogen within the flake-like inclusion, and the almost complete absence of elements that are typically involved in inorganic crystallization. This rise in nitrogen could possibility be related to higher package density of proteins, achieved by mesostructure assembly.
The ovisac lining of
is endowed with numerous mesostructured inclusions that have not been previously reported. We hypothesize that their self-assembly was from proteinaceous polycrystalline units and carbohydrates. These mesostructured flakes displayed active optical properties, as an umbrella-like, reflective cover of the ovisac, which suggests a functional role in the reproduction of
. In turn, studies into ovisac mesostructured inclusions could help to optimizing rearing
as feed for fish farming. We propose
ovisacs as an
model system for studying mesostructure formation.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>29093995</pmid><doi>10.7717/peerj.3923</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-8359 |
ispartof | PeerJ (San Francisco, CA), 2017-10, Vol.5, p.e3923-e3923, Article e3923 |
issn | 2167-8359 2167-8359 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a29934632d74489fa073c5eb3f06b3d8 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Analysis Aquaculture, Fisheries and Fish Science Artemia Artemia franciscana Biomineralization Biopolymers Branchiopods Brine shrimps Carbohydrates Cell Biology Confocal reflection microscopy Crustacea Crystallization Crystals Cysts Eggs Electron diffraction Electron microscopy Fish Freezing Histology Intracellular Laboratories Light Marine Biology Medical imaging Mineralization Molecular biology Optical properties Ovisac Physiological aspects Properties Rapid freeze substitution Reproduction Self-assembly Structure Studies Zoology |
title | Novel mesostructured inclusions in the epidermal lining of Artemia franciscana ovisacs show optical activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20mesostructured%20inclusions%20in%20the%20epidermal%20lining%20of%20Artemia%20franciscana%20ovisacs%20show%20optical%20activity&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Hollergschwandtner,%20Elena&rft.date=2017-10-27&rft.volume=5&rft.spage=e3923&rft.epage=e3923&rft.pages=e3923-e3923&rft.artnum=e3923&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.3923&rft_dat=%3Cgale_doaj_%3EA511698690%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-4f726215dc8a9f9d83358ad515f1f12248bdf213d699bacafcdc6bb3981b41ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1956428178&rft_id=info:pmid/29093995&rft_galeid=A511698690&rfr_iscdi=true |