Loading…
Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics
We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermo...
Saved in:
Published in: | International journal of molecular sciences 2024-06, Vol.25 (12), p.6316 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | 6316 |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Martínez-Zacarias, Aranza C López-Pérez, Edgar Alas-Guardado, Salomón J |
description | We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein. |
doi_str_mv | 10.3390/ijms25126316 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a2a2b1a2c2b64f5fb85842cf910e1546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799622512</galeid><doaj_id>oai_doaj_org_article_a2a2b1a2c2b64f5fb85842cf910e1546</doaj_id><sourcerecordid>A799622512</sourcerecordid><originalsourceid>FETCH-LOGICAL-d373t-ba844bbff970bdc574482563e80fb349a9c8e0ed69b12034c3d60b409795d95c3</originalsourceid><addsrcrecordid>eNptkU1vFDEMhkcIJErhxg-IxIXLlky-ZnJCS1topa2oRDkHJ5PsZpWZlCSDtP-eTNvDFqFYimW_fuzETfO-xWeUSvzJ78dMeEsEbcWL5qRlhKwwFt3LI_918ybnPcaEEi5Pml-XzllTUHSo7CzaHLIg6wDoZi5QfJxQtSVxt7NphIB-FNA--HJYKr7kcnWb0G2KxfoJ6QO6icGaOUBCF4cJRm_y2-aVg5Dtu6f7tPn59fLu_Gq1-f7t-ny9WQ20o2WloWdMa-dkh_VgeMdYT7igtsdOUyZBmt5iOwipW4IpM3QQWDMsO8kHyQ09ba4fuUOEvbpPfoR0UBG8egjEtFWQijfBKiBAdAvEEC2Y4073vGfEONli23ImKuvzI-t-1qMdjJ1KgvAM-jwz-Z3axj-qXWYTklfCxydCir9nm4safTY2BJhsnLOiuCM9JhIvzT78I93HOU31rx5UlPdEHqm2UF_gJxdrY7NA1bqTUpBl71V19h9VPYOtu4iTdb7Gjwr-Ajp3roo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072358296</pqid></control><display><type>article</type><title>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Martínez-Zacarias, Aranza C ; López-Pérez, Edgar ; Alas-Guardado, Salomón J</creator><creatorcontrib>Martínez-Zacarias, Aranza C ; López-Pérez, Edgar ; Alas-Guardado, Salomón J</creatorcontrib><description>We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25126316</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amino acids ; BstHPr protein ; Drug resistance in microorganisms ; Genetic aspects ; Metabolism ; Molecular dynamics ; mutant ; Mutation ; Organisms ; Proteins ; salt bridge network ; Temperature ; thermal stability ; wild type</subject><ispartof>International journal of molecular sciences, 2024-06, Vol.25 (12), p.6316</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072358296/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072358296?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Martínez-Zacarias, Aranza C</creatorcontrib><creatorcontrib>López-Pérez, Edgar</creatorcontrib><creatorcontrib>Alas-Guardado, Salomón J</creatorcontrib><title>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</title><title>International journal of molecular sciences</title><description>We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.</description><subject>Amino acids</subject><subject>BstHPr protein</subject><subject>Drug resistance in microorganisms</subject><subject>Genetic aspects</subject><subject>Metabolism</subject><subject>Molecular dynamics</subject><subject>mutant</subject><subject>Mutation</subject><subject>Organisms</subject><subject>Proteins</subject><subject>salt bridge network</subject><subject>Temperature</subject><subject>thermal stability</subject><subject>wild type</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1vFDEMhkcIJErhxg-IxIXLlky-ZnJCS1topa2oRDkHJ5PsZpWZlCSDtP-eTNvDFqFYimW_fuzETfO-xWeUSvzJ78dMeEsEbcWL5qRlhKwwFt3LI_918ybnPcaEEi5Pml-XzllTUHSo7CzaHLIg6wDoZi5QfJxQtSVxt7NphIB-FNA--HJYKr7kcnWb0G2KxfoJ6QO6icGaOUBCF4cJRm_y2-aVg5Dtu6f7tPn59fLu_Gq1-f7t-ny9WQ20o2WloWdMa-dkh_VgeMdYT7igtsdOUyZBmt5iOwipW4IpM3QQWDMsO8kHyQ09ba4fuUOEvbpPfoR0UBG8egjEtFWQijfBKiBAdAvEEC2Y4073vGfEONli23ImKuvzI-t-1qMdjJ1KgvAM-jwz-Z3axj-qXWYTklfCxydCir9nm4safTY2BJhsnLOiuCM9JhIvzT78I93HOU31rx5UlPdEHqm2UF_gJxdrY7NA1bqTUpBl71V19h9VPYOtu4iTdb7Gjwr-Ajp3roo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Martínez-Zacarias, Aranza C</creator><creator>López-Pérez, Edgar</creator><creator>Alas-Guardado, Salomón J</creator><general>MDPI AG</general><general>MDPI</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240601</creationdate><title>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</title><author>Martínez-Zacarias, Aranza C ; López-Pérez, Edgar ; Alas-Guardado, Salomón J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d373t-ba844bbff970bdc574482563e80fb349a9c8e0ed69b12034c3d60b409795d95c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>BstHPr protein</topic><topic>Drug resistance in microorganisms</topic><topic>Genetic aspects</topic><topic>Metabolism</topic><topic>Molecular dynamics</topic><topic>mutant</topic><topic>Mutation</topic><topic>Organisms</topic><topic>Proteins</topic><topic>salt bridge network</topic><topic>Temperature</topic><topic>thermal stability</topic><topic>wild type</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Zacarias, Aranza C</creatorcontrib><creatorcontrib>López-Pérez, Edgar</creatorcontrib><creatorcontrib>Alas-Guardado, Salomón J</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Zacarias, Aranza C</au><au>López-Pérez, Edgar</au><au>Alas-Guardado, Salomón J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</atitle><jtitle>International journal of molecular sciences</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>6316</spage><pages>6316-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijms25126316</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-06, Vol.25 (12), p.6316 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_a2a2b1a2c2b64f5fb85842cf910e1546 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Amino acids BstHPr protein Drug resistance in microorganisms Genetic aspects Metabolism Molecular dynamics mutant Mutation Organisms Proteins salt bridge network Temperature thermal stability wild type |
title | Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20Lys62Ala%20Mutation%20on%20the%20Thermal%20Stability%20of%20BstHPr%20Protein%20by%20Molecular%20Dynamics&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Mart%C3%ADnez-Zacarias,%20Aranza%20C&rft.date=2024-06-01&rft.volume=25&rft.issue=12&rft.spage=6316&rft.pages=6316-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25126316&rft_dat=%3Cgale_doaj_%3EA799622512%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d373t-ba844bbff970bdc574482563e80fb349a9c8e0ed69b12034c3d60b409795d95c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072358296&rft_id=info:pmid/&rft_galeid=A799622512&rfr_iscdi=true |