Loading…

Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics

We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2024-06, Vol.25 (12), p.6316
Main Authors: Martínez-Zacarias, Aranza C, López-Pérez, Edgar, Alas-Guardado, Salomón J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page 6316
container_title International journal of molecular sciences
container_volume 25
creator Martínez-Zacarias, Aranza C
López-Pérez, Edgar
Alas-Guardado, Salomón J
description We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.
doi_str_mv 10.3390/ijms25126316
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a2a2b1a2c2b64f5fb85842cf910e1546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799622512</galeid><doaj_id>oai_doaj_org_article_a2a2b1a2c2b64f5fb85842cf910e1546</doaj_id><sourcerecordid>A799622512</sourcerecordid><originalsourceid>FETCH-LOGICAL-d373t-ba844bbff970bdc574482563e80fb349a9c8e0ed69b12034c3d60b409795d95c3</originalsourceid><addsrcrecordid>eNptkU1vFDEMhkcIJErhxg-IxIXLlky-ZnJCS1topa2oRDkHJ5PsZpWZlCSDtP-eTNvDFqFYimW_fuzETfO-xWeUSvzJ78dMeEsEbcWL5qRlhKwwFt3LI_918ybnPcaEEi5Pml-XzllTUHSo7CzaHLIg6wDoZi5QfJxQtSVxt7NphIB-FNA--HJYKr7kcnWb0G2KxfoJ6QO6icGaOUBCF4cJRm_y2-aVg5Dtu6f7tPn59fLu_Gq1-f7t-ny9WQ20o2WloWdMa-dkh_VgeMdYT7igtsdOUyZBmt5iOwipW4IpM3QQWDMsO8kHyQ09ba4fuUOEvbpPfoR0UBG8egjEtFWQijfBKiBAdAvEEC2Y4073vGfEONli23ImKuvzI-t-1qMdjJ1KgvAM-jwz-Z3axj-qXWYTklfCxydCir9nm4safTY2BJhsnLOiuCM9JhIvzT78I93HOU31rx5UlPdEHqm2UF_gJxdrY7NA1bqTUpBl71V19h9VPYOtu4iTdb7Gjwr-Ajp3roo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072358296</pqid></control><display><type>article</type><title>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Martínez-Zacarias, Aranza C ; López-Pérez, Edgar ; Alas-Guardado, Salomón J</creator><creatorcontrib>Martínez-Zacarias, Aranza C ; López-Pérez, Edgar ; Alas-Guardado, Salomón J</creatorcontrib><description>We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25126316</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amino acids ; BstHPr protein ; Drug resistance in microorganisms ; Genetic aspects ; Metabolism ; Molecular dynamics ; mutant ; Mutation ; Organisms ; Proteins ; salt bridge network ; Temperature ; thermal stability ; wild type</subject><ispartof>International journal of molecular sciences, 2024-06, Vol.25 (12), p.6316</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3072358296/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3072358296?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Martínez-Zacarias, Aranza C</creatorcontrib><creatorcontrib>López-Pérez, Edgar</creatorcontrib><creatorcontrib>Alas-Guardado, Salomón J</creatorcontrib><title>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</title><title>International journal of molecular sciences</title><description>We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.</description><subject>Amino acids</subject><subject>BstHPr protein</subject><subject>Drug resistance in microorganisms</subject><subject>Genetic aspects</subject><subject>Metabolism</subject><subject>Molecular dynamics</subject><subject>mutant</subject><subject>Mutation</subject><subject>Organisms</subject><subject>Proteins</subject><subject>salt bridge network</subject><subject>Temperature</subject><subject>thermal stability</subject><subject>wild type</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU1vFDEMhkcIJErhxg-IxIXLlky-ZnJCS1topa2oRDkHJ5PsZpWZlCSDtP-eTNvDFqFYimW_fuzETfO-xWeUSvzJ78dMeEsEbcWL5qRlhKwwFt3LI_918ybnPcaEEi5Pml-XzllTUHSo7CzaHLIg6wDoZi5QfJxQtSVxt7NphIB-FNA--HJYKr7kcnWb0G2KxfoJ6QO6icGaOUBCF4cJRm_y2-aVg5Dtu6f7tPn59fLu_Gq1-f7t-ny9WQ20o2WloWdMa-dkh_VgeMdYT7igtsdOUyZBmt5iOwipW4IpM3QQWDMsO8kHyQ09ba4fuUOEvbpPfoR0UBG8egjEtFWQijfBKiBAdAvEEC2Y4073vGfEONli23ImKuvzI-t-1qMdjJ1KgvAM-jwz-Z3axj-qXWYTklfCxydCir9nm4safTY2BJhsnLOiuCM9JhIvzT78I93HOU31rx5UlPdEHqm2UF_gJxdrY7NA1bqTUpBl71V19h9VPYOtu4iTdb7Gjwr-Ajp3roo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Martínez-Zacarias, Aranza C</creator><creator>López-Pérez, Edgar</creator><creator>Alas-Guardado, Salomón J</creator><general>MDPI AG</general><general>MDPI</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240601</creationdate><title>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</title><author>Martínez-Zacarias, Aranza C ; López-Pérez, Edgar ; Alas-Guardado, Salomón J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d373t-ba844bbff970bdc574482563e80fb349a9c8e0ed69b12034c3d60b409795d95c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino acids</topic><topic>BstHPr protein</topic><topic>Drug resistance in microorganisms</topic><topic>Genetic aspects</topic><topic>Metabolism</topic><topic>Molecular dynamics</topic><topic>mutant</topic><topic>Mutation</topic><topic>Organisms</topic><topic>Proteins</topic><topic>salt bridge network</topic><topic>Temperature</topic><topic>thermal stability</topic><topic>wild type</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Zacarias, Aranza C</creatorcontrib><creatorcontrib>López-Pérez, Edgar</creatorcontrib><creatorcontrib>Alas-Guardado, Salomón J</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Zacarias, Aranza C</au><au>López-Pérez, Edgar</au><au>Alas-Guardado, Salomón J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics</atitle><jtitle>International journal of molecular sciences</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>6316</spage><pages>6316-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijms25126316</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2024-06, Vol.25 (12), p.6316
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a2a2b1a2c2b64f5fb85842cf910e1546
source PubMed (Medline); Publicly Available Content Database
subjects Amino acids
BstHPr protein
Drug resistance in microorganisms
Genetic aspects
Metabolism
Molecular dynamics
mutant
Mutation
Organisms
Proteins
salt bridge network
Temperature
thermal stability
wild type
title Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20Lys62Ala%20Mutation%20on%20the%20Thermal%20Stability%20of%20BstHPr%20Protein%20by%20Molecular%20Dynamics&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Mart%C3%ADnez-Zacarias,%20Aranza%20C&rft.date=2024-06-01&rft.volume=25&rft.issue=12&rft.spage=6316&rft.pages=6316-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25126316&rft_dat=%3Cgale_doaj_%3EA799622512%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d373t-ba844bbff970bdc574482563e80fb349a9c8e0ed69b12034c3d60b409795d95c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072358296&rft_id=info:pmid/&rft_galeid=A799622512&rfr_iscdi=true