Loading…
PV-Wind-Diesel based Grid Connected Water Pumping System Driven by Induction Motor
The increasing need for sustainable and efficient water pumping solutions in remote and rural regions has led to the investigation of hybrid renewable energy systems. This document offers an extensive analysis of a grid-connected water pumping system that utilizes a combination of photovoltaic, wind...
Saved in:
Published in: | E3S web of conferences 2024, Vol.564, p.4004 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The increasing need for sustainable and efficient water pumping solutions in remote and rural regions has led to the investigation of hybrid renewable energy systems. This document offers an extensive analysis of a grid-connected water pumping system that utilizes a combination of photovoltaic, wind, and diesel energy sources, powered by an induction motor. The suggested system utilizes the synergistic characteristics of photovoltaic (PV) and wind energy sources, augmented by a diesel generator to guarantee uninterrupted and dependable functionality. We commence by outlining the system architecture, which incorporates PV panels, a wind turbine, and a diesel generator linked via a shared DC bus, interfacing with an AC grid. The water pump is powered by an induction motor, selected for its durability and minimal maintenance requirements. Sophisticated power electronic converters and controllers are utilized to regulate energy transfer and ensure optimal operating conditions. The study’s essential components encompass the modeling and simulation of the hybrid system across diverse environmental and load scenarios. We evaluate performance indicators including energy efficiency, reliability, and cost-effectiveness. The control strategy integrates Maximum Power Point Tracking (MPPT) for both the PV and wind subsystems, thereby optimizing the use of available renewable resources to their fullest potential. Furthermore, the diesel generator serves as a supplementary power source during times of inadequate renewable energy, thus improving the overall reliability of the system. The findings indicate that the suggested hybrid system markedly decreases reliance on fossil fuels, reduces operational expenses, and offers a sustainable alternative for water pumping applications. The environmental benefits, including reduced greenhouse gas emissions, are also highlighted. The research culminates in a discourse regarding the scalability and practicality of implementing such systems across various geographical regions, as well as potential enhancements and avenues for future investigation. |
---|---|
ISSN: | 2267-1242 2267-1242 |
DOI: | 10.1051/e3sconf/202456404004 |