Loading…

Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization

Rigorous black-box simulations are useful to describe complex systems. However, it cannot be directly integrated into mathematical programming models in some algebraic modeling environments because of the lack of symbolic formulation. In the present paper, a framework is proposed to embed the Aspen...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering transactions 2021-11, Vol.88
Main Authors: Lucas F. Santos, Caliane B. B. Costa, José A. Caballero, Mauro A. S. S. Ravagnani
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Chemical engineering transactions
container_volume 88
creator Lucas F. Santos
Caliane B. B. Costa
José A. Caballero
Mauro A. S. S. Ravagnani
description Rigorous black-box simulations are useful to describe complex systems. However, it cannot be directly integrated into mathematical programming models in some algebraic modeling environments because of the lack of symbolic formulation. In the present paper, a framework is proposed to embed the Aspen HYSYS process simulator in GAMS using kriging surrogate models to replace the simulator-dependent, black-box objective, and constraints functions. The approach is applied to the energy-efficient C3MR natural gas liquefaction process simulation optimization using multi-start nonlinear programming and the local solver CONOPT in GAMS. Results were compared with two other meta-heuristic approaches, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), and with the literature. In a small simulation evaluation budget of 20 times the number of decision variables, the proposed optimization approach resulted in 0.2538 kW of compression work per kg of natural gas and surpassed those of the PSO and GA and the previous literature from 2.45 to 15.3 %.
doi_str_mv 10.3303/CET2188079
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a2cf2cbb6d084f41b3e148f77c6e6437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a2cf2cbb6d084f41b3e148f77c6e6437</doaj_id><sourcerecordid>oai_doaj_org_article_a2cf2cbb6d084f41b3e148f77c6e6437</sourcerecordid><originalsourceid>FETCH-LOGICAL-d136t-db4452908491d8d50de64bc561af173f72174aac3676af9a13315081c794e70a3</originalsourceid><addsrcrecordid>eNotjUtOwzAYhC0kJKrSDSfwBQJ27NjJsoraUtFSRMs6-uNH5JLUwUlAsOXipMBqNPONZhC6oeSWMcLu8sUhpmlKZHaBJnGcsiiLqbhCs647EkJGRlMuJuh7GaAxHz68YusDXjSl0dqdKvwUvDJdh_euGWroR-ZOeDXf7vG7A_wQXHVu7YcQfAW9wVuvTY3nbVs7o3Hvcc62z_gR-iFAjVfQ4Y17G4wF1Tt_wru2d437grO5RpcW6s7M_nWKXpaLQ34fbXardT7fRJoy0Ue65DyJM5LyjOpUJ0QbwUuVCAqWSmZlTCUHUExIATYDyhhNSEqVzLiRBNgUrf92tYdj0QbXQPgsPLjiN_ChKiD0TtWmgFjZWJWl0OOd5bRkhvLUSqnEeMok-wGz7W0J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization</title><source>DOAJ Directory of Open Access Journals</source><creator>Lucas F. Santos ; Caliane B. B. Costa ; José A. Caballero ; Mauro A. S. S. Ravagnani</creator><creatorcontrib>Lucas F. Santos ; Caliane B. B. Costa ; José A. Caballero ; Mauro A. S. S. Ravagnani</creatorcontrib><description>Rigorous black-box simulations are useful to describe complex systems. However, it cannot be directly integrated into mathematical programming models in some algebraic modeling environments because of the lack of symbolic formulation. In the present paper, a framework is proposed to embed the Aspen HYSYS process simulator in GAMS using kriging surrogate models to replace the simulator-dependent, black-box objective, and constraints functions. The approach is applied to the energy-efficient C3MR natural gas liquefaction process simulation optimization using multi-start nonlinear programming and the local solver CONOPT in GAMS. Results were compared with two other meta-heuristic approaches, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), and with the literature. In a small simulation evaluation budget of 20 times the number of decision variables, the proposed optimization approach resulted in 0.2538 kW of compression work per kg of natural gas and surpassed those of the PSO and GA and the previous literature from 2.45 to 15.3 %.</description><identifier>EISSN: 2283-9216</identifier><identifier>DOI: 10.3303/CET2188079</identifier><language>eng</language><publisher>AIDIC Servizi S.r.l</publisher><ispartof>Chemical engineering transactions, 2021-11, Vol.88</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27903,27904</link.rule.ids></links><search><creatorcontrib>Lucas F. Santos</creatorcontrib><creatorcontrib>Caliane B. B. Costa</creatorcontrib><creatorcontrib>José A. Caballero</creatorcontrib><creatorcontrib>Mauro A. S. S. Ravagnani</creatorcontrib><title>Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization</title><title>Chemical engineering transactions</title><description>Rigorous black-box simulations are useful to describe complex systems. However, it cannot be directly integrated into mathematical programming models in some algebraic modeling environments because of the lack of symbolic formulation. In the present paper, a framework is proposed to embed the Aspen HYSYS process simulator in GAMS using kriging surrogate models to replace the simulator-dependent, black-box objective, and constraints functions. The approach is applied to the energy-efficient C3MR natural gas liquefaction process simulation optimization using multi-start nonlinear programming and the local solver CONOPT in GAMS. Results were compared with two other meta-heuristic approaches, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), and with the literature. In a small simulation evaluation budget of 20 times the number of decision variables, the proposed optimization approach resulted in 0.2538 kW of compression work per kg of natural gas and surpassed those of the PSO and GA and the previous literature from 2.45 to 15.3 %.</description><issn>2283-9216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotjUtOwzAYhC0kJKrSDSfwBQJ27NjJsoraUtFSRMs6-uNH5JLUwUlAsOXipMBqNPONZhC6oeSWMcLu8sUhpmlKZHaBJnGcsiiLqbhCs647EkJGRlMuJuh7GaAxHz68YusDXjSl0dqdKvwUvDJdh_euGWroR-ZOeDXf7vG7A_wQXHVu7YcQfAW9wVuvTY3nbVs7o3Hvcc62z_gR-iFAjVfQ4Y17G4wF1Tt_wru2d437grO5RpcW6s7M_nWKXpaLQ34fbXardT7fRJoy0Ue65DyJM5LyjOpUJ0QbwUuVCAqWSmZlTCUHUExIATYDyhhNSEqVzLiRBNgUrf92tYdj0QbXQPgsPLjiN_ChKiD0TtWmgFjZWJWl0OOd5bRkhvLUSqnEeMok-wGz7W0J</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Lucas F. Santos</creator><creator>Caliane B. B. Costa</creator><creator>José A. Caballero</creator><creator>Mauro A. S. S. Ravagnani</creator><general>AIDIC Servizi S.r.l</general><scope>DOA</scope></search><sort><creationdate>20211101</creationdate><title>Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization</title><author>Lucas F. Santos ; Caliane B. B. Costa ; José A. Caballero ; Mauro A. S. S. Ravagnani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d136t-db4452908491d8d50de64bc561af173f72174aac3676af9a13315081c794e70a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas F. Santos</creatorcontrib><creatorcontrib>Caliane B. B. Costa</creatorcontrib><creatorcontrib>José A. Caballero</creatorcontrib><creatorcontrib>Mauro A. S. S. Ravagnani</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Chemical engineering transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas F. Santos</au><au>Caliane B. B. Costa</au><au>José A. Caballero</au><au>Mauro A. S. S. Ravagnani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization</atitle><jtitle>Chemical engineering transactions</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>88</volume><eissn>2283-9216</eissn><abstract>Rigorous black-box simulations are useful to describe complex systems. However, it cannot be directly integrated into mathematical programming models in some algebraic modeling environments because of the lack of symbolic formulation. In the present paper, a framework is proposed to embed the Aspen HYSYS process simulator in GAMS using kriging surrogate models to replace the simulator-dependent, black-box objective, and constraints functions. The approach is applied to the energy-efficient C3MR natural gas liquefaction process simulation optimization using multi-start nonlinear programming and the local solver CONOPT in GAMS. Results were compared with two other meta-heuristic approaches, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), and with the literature. In a small simulation evaluation budget of 20 times the number of decision variables, the proposed optimization approach resulted in 0.2538 kW of compression work per kg of natural gas and surpassed those of the PSO and GA and the previous literature from 2.45 to 15.3 %.</abstract><pub>AIDIC Servizi S.r.l</pub><doi>10.3303/CET2188079</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2283-9216
ispartof Chemical engineering transactions, 2021-11, Vol.88
issn 2283-9216
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a2cf2cbb6d084f41b3e148f77c6e6437
source DOAJ Directory of Open Access Journals
title Framework for Embedding Process Simulator in GAMS via Kriging Surrogate Model Applied to C3MR Natural Gas Liquefaction Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20for%20Embedding%20Process%20Simulator%20in%20GAMS%20via%20Kriging%20Surrogate%20Model%20Applied%20to%20C3MR%20Natural%20Gas%20Liquefaction%20Optimization&rft.jtitle=Chemical%20engineering%20transactions&rft.au=Lucas%20F.%20Santos&rft.date=2021-11-01&rft.volume=88&rft.eissn=2283-9216&rft_id=info:doi/10.3303/CET2188079&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_a2cf2cbb6d084f41b3e148f77c6e6437%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d136t-db4452908491d8d50de64bc561af173f72174aac3676af9a13315081c794e70a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true