Loading…
Mitigation of power oscillations using hybrid DE-PSO optimization-based SSSC damping controller
This paper presents an optimal design of a static synchronous series compensator (SSSC)-based controller for damping of low-frequency oscillations in multi-machine power systems. The proposed controller design problem is formulated to the optimization problem. The tuning of controller parameters can...
Saved in:
Published in: | Journal of Electrical Systems and Information Technology 2019-12, Vol.6 (1), p.1-17, Article 5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an optimal design of a static synchronous series compensator (SSSC)-based controller for damping of low-frequency oscillations in multi-machine power systems. The proposed controller design problem is formulated to the optimization problem. The tuning of controller parameters can be obtained by employing a new hybrid differential evolution and particle swarm optimization (hDE-PSO) algorithm. To justify the effectiveness of the proposed SSSC-based damping controller, three-machine and four-machine power systems have been considered. The hDE-PSO algorithm outperforms in the damping of oscillations over DE and PSO algorithms. Various simulation results are presented and compared for different load disturbances like three-phase fault, load rejection and tripping of one parallel transmission line. The simulation results ensure the robustness of the proposed controller. |
---|---|
ISSN: | 2314-7172 2314-7172 |
DOI: | 10.1186/s43067-019-0007-y |