Loading…

A Universal Operator Growth Hypothesis

We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction expansion of the Green’s functions grow linearly with rateαin generic systems, with an extr...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2019-10, Vol.9 (4), p.041017, Article 041017
Main Authors: Parker, Daniel E., Cao, Xiangyu, Avdoshkin, Alexander, Scaffidi, Thomas, Altman, Ehud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-c6b5d32c03fc0a4ec23fb174872808e8e4b9dc23fd0ac7c5990195796904a69e3
cites cdi_FETCH-LOGICAL-c457t-c6b5d32c03fc0a4ec23fb174872808e8e4b9dc23fd0ac7c5990195796904a69e3
container_end_page
container_issue 4
container_start_page 041017
container_title Physical review. X
container_volume 9
creator Parker, Daniel E.
Cao, Xiangyu
Avdoshkin, Alexander
Scaffidi, Thomas
Altman, Ehud
description We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction expansion of the Green’s functions grow linearly with rateαin generic systems, with an extra logarithmic correction in 1D. The rateα—an experimental observable—governs the exponential growth of operator complexity in a sense we make precise. This exponential growth prevails beyond semiclassical or large-Nlimits. Moreover,αupper bounds a large class of operator complexity measures, including the out-of-time-order correlator. As a result, we obtain a sharp bound on Lyapunov exponentsλL≤2α, which complements and improves the known universal low-temperature boundλL≤2πT. We illustrate our results in paradigmatic examples such as nonintegrable spin chains, the Sachdev-Ye-Kitaev model, and classical models. Finally, we use the hypothesis in conjunction with the recursion method to develop a technique for computing diffusion constants.
doi_str_mv 10.1103/PhysRevX.9.041017
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a37f7a9f79d14588ba9b48d6b745d940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a37f7a9f79d14588ba9b48d6b745d940</doaj_id><sourcerecordid>2550629659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-c6b5d32c03fc0a4ec23fb174872808e8e4b9dc23fd0ac7c5990195796904a69e3</originalsourceid><addsrcrecordid>eNpNkV9LwzAUxYMoOOY-gG9FwbfNm-Zf8ziGboPBRBz4FtI0tR2zqUk22be3syrel3s5_Djcw0HoGsMEYyD3T9UxPNvD60ROgGLA4gwNUsxhTAhk5__uSzQKYQvdcMBUiAG6myabpj5YH_QuWbfW6-h8MvfuM1bJ4ti6WNlQhyt0UepdsKOfPUSbx4eX2WK8Ws-Xs-lqbCgTcWx4zgqSGiClAU2tSUmZY0EzkWaQ2czSXBYnsQBthGFSApZMSC6Bai4tGaJl71s4vVWtr9-1Pyqna_UtOP-mtI-12VmliSiFlqWQBaYsy3Itc5oVPBeUFZJC53XTe7kQaxVMHa2pjGsaa6LCTGBGRAfd9lDr3cfehqi2bu-bLqNKGQOeSs5kR-GeMt6F4G359xoGdapA_VagpOorIF9vtXgn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550629659</pqid></control><display><type>article</type><title>A Universal Operator Growth Hypothesis</title><source>Publicly Available Content Database</source><creator>Parker, Daniel E. ; Cao, Xiangyu ; Avdoshkin, Alexander ; Scaffidi, Thomas ; Altman, Ehud</creator><creatorcontrib>Parker, Daniel E. ; Cao, Xiangyu ; Avdoshkin, Alexander ; Scaffidi, Thomas ; Altman, Ehud ; Univ. of California, Oakland, CA (United States)</creatorcontrib><description>We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction expansion of the Green’s functions grow linearly with rateαin generic systems, with an extra logarithmic correction in 1D. The rateα—an experimental observable—governs the exponential growth of operator complexity in a sense we make precise. This exponential growth prevails beyond semiclassical or large-Nlimits. Moreover,αupper bounds a large class of operator complexity measures, including the out-of-time-order correlator. As a result, we obtain a sharp bound on Lyapunov exponentsλL≤2α, which complements and improves the known universal low-temperature boundλL≤2πT. We illustrate our results in paradigmatic examples such as nonintegrable spin chains, the Sachdev-Ye-Kitaev model, and classical models. Finally, we use the hypothesis in conjunction with the recursion method to develop a technique for computing diffusion constants.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.9.041017</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Complexity ; Eigenvectors ; Equilibrium ; Hypotheses ; Low temperature ; Mathematical models ; Operators (mathematics) ; Physics ; Quantum theory ; Thermal expansion ; Thermalization (energy absorption)</subject><ispartof>Physical review. X, 2019-10, Vol.9 (4), p.041017, Article 041017</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-c6b5d32c03fc0a4ec23fb174872808e8e4b9dc23fd0ac7c5990195796904a69e3</citedby><cites>FETCH-LOGICAL-c457t-c6b5d32c03fc0a4ec23fb174872808e8e4b9dc23fd0ac7c5990195796904a69e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550629659?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25751,27922,27923,37010,44588</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1571537$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Cao, Xiangyu</creatorcontrib><creatorcontrib>Avdoshkin, Alexander</creatorcontrib><creatorcontrib>Scaffidi, Thomas</creatorcontrib><creatorcontrib>Altman, Ehud</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><title>A Universal Operator Growth Hypothesis</title><title>Physical review. X</title><description>We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction expansion of the Green’s functions grow linearly with rateαin generic systems, with an extra logarithmic correction in 1D. The rateα—an experimental observable—governs the exponential growth of operator complexity in a sense we make precise. This exponential growth prevails beyond semiclassical or large-Nlimits. Moreover,αupper bounds a large class of operator complexity measures, including the out-of-time-order correlator. As a result, we obtain a sharp bound on Lyapunov exponentsλL≤2α, which complements and improves the known universal low-temperature boundλL≤2πT. We illustrate our results in paradigmatic examples such as nonintegrable spin chains, the Sachdev-Ye-Kitaev model, and classical models. Finally, we use the hypothesis in conjunction with the recursion method to develop a technique for computing diffusion constants.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Complexity</subject><subject>Eigenvectors</subject><subject>Equilibrium</subject><subject>Hypotheses</subject><subject>Low temperature</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Quantum theory</subject><subject>Thermal expansion</subject><subject>Thermalization (energy absorption)</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9LwzAUxYMoOOY-gG9FwbfNm-Zf8ziGboPBRBz4FtI0tR2zqUk22be3syrel3s5_Djcw0HoGsMEYyD3T9UxPNvD60ROgGLA4gwNUsxhTAhk5__uSzQKYQvdcMBUiAG6myabpj5YH_QuWbfW6-h8MvfuM1bJ4ti6WNlQhyt0UepdsKOfPUSbx4eX2WK8Ws-Xs-lqbCgTcWx4zgqSGiClAU2tSUmZY0EzkWaQ2czSXBYnsQBthGFSApZMSC6Bai4tGaJl71s4vVWtr9-1Pyqna_UtOP-mtI-12VmliSiFlqWQBaYsy3Itc5oVPBeUFZJC53XTe7kQaxVMHa2pjGsaa6LCTGBGRAfd9lDr3cfehqi2bu-bLqNKGQOeSs5kR-GeMt6F4G359xoGdapA_VagpOorIF9vtXgn</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Parker, Daniel E.</creator><creator>Cao, Xiangyu</creator><creator>Avdoshkin, Alexander</creator><creator>Scaffidi, Thomas</creator><creator>Altman, Ehud</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20191023</creationdate><title>A Universal Operator Growth Hypothesis</title><author>Parker, Daniel E. ; Cao, Xiangyu ; Avdoshkin, Alexander ; Scaffidi, Thomas ; Altman, Ehud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-c6b5d32c03fc0a4ec23fb174872808e8e4b9dc23fd0ac7c5990195796904a69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Complexity</topic><topic>Eigenvectors</topic><topic>Equilibrium</topic><topic>Hypotheses</topic><topic>Low temperature</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Quantum theory</topic><topic>Thermal expansion</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, Daniel E.</creatorcontrib><creatorcontrib>Cao, Xiangyu</creatorcontrib><creatorcontrib>Avdoshkin, Alexander</creatorcontrib><creatorcontrib>Scaffidi, Thomas</creatorcontrib><creatorcontrib>Altman, Ehud</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Daniel E.</au><au>Cao, Xiangyu</au><au>Avdoshkin, Alexander</au><au>Scaffidi, Thomas</au><au>Altman, Ehud</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Operator Growth Hypothesis</atitle><jtitle>Physical review. X</jtitle><date>2019-10-23</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><spage>041017</spage><pages>041017-</pages><artnum>041017</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction expansion of the Green’s functions grow linearly with rateαin generic systems, with an extra logarithmic correction in 1D. The rateα—an experimental observable—governs the exponential growth of operator complexity in a sense we make precise. This exponential growth prevails beyond semiclassical or large-Nlimits. Moreover,αupper bounds a large class of operator complexity measures, including the out-of-time-order correlator. As a result, we obtain a sharp bound on Lyapunov exponentsλL≤2α, which complements and improves the known universal low-temperature boundλL≤2πT. We illustrate our results in paradigmatic examples such as nonintegrable spin chains, the Sachdev-Ye-Kitaev model, and classical models. Finally, we use the hypothesis in conjunction with the recursion method to develop a technique for computing diffusion constants.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.9.041017</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2019-10, Vol.9 (4), p.041017, Article 041017
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a37f7a9f79d14588ba9b48d6b745d940
source Publicly Available Content Database
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Complexity
Eigenvectors
Equilibrium
Hypotheses
Low temperature
Mathematical models
Operators (mathematics)
Physics
Quantum theory
Thermal expansion
Thermalization (energy absorption)
title A Universal Operator Growth Hypothesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Operator%20Growth%20Hypothesis&rft.jtitle=Physical%20review.%20X&rft.au=Parker,%20Daniel%20E.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2019-10-23&rft.volume=9&rft.issue=4&rft.spage=041017&rft.pages=041017-&rft.artnum=041017&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.9.041017&rft_dat=%3Cproquest_doaj_%3E2550629659%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-c6b5d32c03fc0a4ec23fb174872808e8e4b9dc23fd0ac7c5990195796904a69e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550629659&rft_id=info:pmid/&rfr_iscdi=true