Loading…

Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches

Recurring forest fires disturb ecological balance, impact socio-economic harmony, and raise global concern. This study implements multiple statistical and weighted modelling approaches to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio (FR), Certainty...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-03, Vol.15 (5), p.1340
Main Authors: Das, Jayshree, Mahato, Susanta, Joshi, Pawan Kumar, Liou, Yuei-An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-eccc2a285bc1a8fbd98f3c4040afa767e9cf60a1bc6124a87759da8fe7db65cb3
cites cdi_FETCH-LOGICAL-c400t-eccc2a285bc1a8fbd98f3c4040afa767e9cf60a1bc6124a87759da8fe7db65cb3
container_end_page
container_issue 5
container_start_page 1340
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Das, Jayshree
Mahato, Susanta
Joshi, Pawan Kumar
Liou, Yuei-An
description Recurring forest fires disturb ecological balance, impact socio-economic harmony, and raise global concern. This study implements multiple statistical and weighted modelling approaches to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio (FR), Certainty Factor (CF), Natural Risk Factor (NRF), Bivariate statistical (Wi and Wf), Analytical Hierarchy Process (AHP), and Logistic Regression (LR) were used in the study. Forest fire inventory (2001 to 2018) mapping was done using forest fire points captured by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Fire responsible components, namely, topography (which has four variables), climate (5), biophysics (8) and disturbance (4) were used as inputs to the modelling approaches. Multicollinearity analysis was carried out to examine the association and remove the highly-correlated variables before performing the modeling. Validation of model prediction levels was done using Area Under the Receiver Operating Characteristic Curve (ROC curve-AUC) value. The results reveal that the areas with west and southwest orientations, and moderate slope demarcate higher susceptibility to forest fire. High precipitation areas with lower temperature but ample solar radiation increase their susceptibility to forest fire. Mixed deciduous forest type with ample solar radiation, higher NDVI, lower NDWI and lower TWI values exhibits higher susceptibility. Model validation shows that LR (with AUC = 0.809) outperforms other models used in the study. To minimize the risk of fire and frame with proper management plans for the study area, susceptibility mapping using satellite imageries, GIS technique, and modelling approaches is highly recommended.
doi_str_mv 10.3390/rs15051340
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_a3810b3447444d7388b82a45073c0e12</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750512692</galeid><doaj_id>oai_doaj_org_article_a3810b3447444d7388b82a45073c0e12</doaj_id><sourcerecordid>A750512692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-eccc2a285bc1a8fbd98f3c4040afa767e9cf60a1bc6124a87759da8fe7db65cb3</originalsourceid><addsrcrecordid>eNpNkU9LJDEQxRtRUFwv-wkC3oTR_OtO-jiIowPKHlwR9hKqk-qZDG0yJpmD396Ms7ibHBKqXv14yWuan4xeC9HTm5RZS1smJD1qzjhVfCZ5z4__u582FzlvaF1CsJ7Ks2a9iAlzIQufkDzvssVt8YOffPkgf2KA4mMgPpA7yAVTIMvgPJCX7MOKPJfazsVbmAgER17Rr9YFHXmKDqdpL5lvtymCXWP-0ZyMMGW8-HueNy-Lu9-3D7PHX_fL2_njzEpKywyttRy4bgfLQI-D6_UoaktSGEF1Cns7dhTYYDvGJWil2t5VISo3dK0dxHmzPHBdhI3ZJv8G6cNE8OarENPKQKqeJzQgNKODkFJJKZ0SWg-ag2ypEpYi45V1eWDVR7zv6jeZTdylUO0brnTLhdS9qKrrg2oFFerDGEsCW7fDN29jwNHX-lzts-Fdv8deHQZsijknHL9tMmr2SZp_SYpPkcKQJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785234893</pqid></control><display><type>article</type><title>Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches</title><source>Publicly Available Content (ProQuest)</source><creator>Das, Jayshree ; Mahato, Susanta ; Joshi, Pawan Kumar ; Liou, Yuei-An</creator><creatorcontrib>Das, Jayshree ; Mahato, Susanta ; Joshi, Pawan Kumar ; Liou, Yuei-An</creatorcontrib><description>Recurring forest fires disturb ecological balance, impact socio-economic harmony, and raise global concern. This study implements multiple statistical and weighted modelling approaches to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio (FR), Certainty Factor (CF), Natural Risk Factor (NRF), Bivariate statistical (Wi and Wf), Analytical Hierarchy Process (AHP), and Logistic Regression (LR) were used in the study. Forest fire inventory (2001 to 2018) mapping was done using forest fire points captured by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Fire responsible components, namely, topography (which has four variables), climate (5), biophysics (8) and disturbance (4) were used as inputs to the modelling approaches. Multicollinearity analysis was carried out to examine the association and remove the highly-correlated variables before performing the modeling. Validation of model prediction levels was done using Area Under the Receiver Operating Characteristic Curve (ROC curve-AUC) value. The results reveal that the areas with west and southwest orientations, and moderate slope demarcate higher susceptibility to forest fire. High precipitation areas with lower temperature but ample solar radiation increase their susceptibility to forest fire. Mixed deciduous forest type with ample solar radiation, higher NDVI, lower NDWI and lower TWI values exhibits higher susceptibility. Model validation shows that LR (with AUC = 0.809) outperforms other models used in the study. To minimize the risk of fire and frame with proper management plans for the study area, susceptibility mapping using satellite imageries, GIS technique, and modelling approaches is highly recommended.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15051340</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analytic hierarchy process ; Biophysics ; Bivariate analysis ; Deciduous forests ; Ecological balance ; Ecology ; Economic models ; Emergency communications systems ; Forest &amp; brush fires ; forest fire susceptibility ; Forest fires ; Geographic information systems ; Geospatial data ; Impact analysis ; India ; Low temperature ; Mapping ; Mathematical models ; Mixed forests ; Modelling ; Precipitation ; prediction ; Prescribed fire ; Remote sensing ; Risk factors ; Risk reduction ; Solar radiation ; spatial mapping ; Spectroradiometers ; Statistical analysis ; statistical modelling ; Susceptibility ; Topography ; validation ; Variables ; Zonation</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-03, Vol.15 (5), p.1340</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-eccc2a285bc1a8fbd98f3c4040afa767e9cf60a1bc6124a87759da8fe7db65cb3</citedby><cites>FETCH-LOGICAL-c400t-eccc2a285bc1a8fbd98f3c4040afa767e9cf60a1bc6124a87759da8fe7db65cb3</cites><orcidid>0000-0002-8100-5529 ; 0000-0002-6307-0167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785234893/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785234893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Das, Jayshree</creatorcontrib><creatorcontrib>Mahato, Susanta</creatorcontrib><creatorcontrib>Joshi, Pawan Kumar</creatorcontrib><creatorcontrib>Liou, Yuei-An</creatorcontrib><title>Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches</title><title>Remote sensing (Basel, Switzerland)</title><description>Recurring forest fires disturb ecological balance, impact socio-economic harmony, and raise global concern. This study implements multiple statistical and weighted modelling approaches to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio (FR), Certainty Factor (CF), Natural Risk Factor (NRF), Bivariate statistical (Wi and Wf), Analytical Hierarchy Process (AHP), and Logistic Regression (LR) were used in the study. Forest fire inventory (2001 to 2018) mapping was done using forest fire points captured by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Fire responsible components, namely, topography (which has four variables), climate (5), biophysics (8) and disturbance (4) were used as inputs to the modelling approaches. Multicollinearity analysis was carried out to examine the association and remove the highly-correlated variables before performing the modeling. Validation of model prediction levels was done using Area Under the Receiver Operating Characteristic Curve (ROC curve-AUC) value. The results reveal that the areas with west and southwest orientations, and moderate slope demarcate higher susceptibility to forest fire. High precipitation areas with lower temperature but ample solar radiation increase their susceptibility to forest fire. Mixed deciduous forest type with ample solar radiation, higher NDVI, lower NDWI and lower TWI values exhibits higher susceptibility. Model validation shows that LR (with AUC = 0.809) outperforms other models used in the study. To minimize the risk of fire and frame with proper management plans for the study area, susceptibility mapping using satellite imageries, GIS technique, and modelling approaches is highly recommended.</description><subject>Analytic hierarchy process</subject><subject>Biophysics</subject><subject>Bivariate analysis</subject><subject>Deciduous forests</subject><subject>Ecological balance</subject><subject>Ecology</subject><subject>Economic models</subject><subject>Emergency communications systems</subject><subject>Forest &amp; brush fires</subject><subject>forest fire susceptibility</subject><subject>Forest fires</subject><subject>Geographic information systems</subject><subject>Geospatial data</subject><subject>Impact analysis</subject><subject>India</subject><subject>Low temperature</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Mixed forests</subject><subject>Modelling</subject><subject>Precipitation</subject><subject>prediction</subject><subject>Prescribed fire</subject><subject>Remote sensing</subject><subject>Risk factors</subject><subject>Risk reduction</subject><subject>Solar radiation</subject><subject>spatial mapping</subject><subject>Spectroradiometers</subject><subject>Statistical analysis</subject><subject>statistical modelling</subject><subject>Susceptibility</subject><subject>Topography</subject><subject>validation</subject><subject>Variables</subject><subject>Zonation</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LJDEQxRtRUFwv-wkC3oTR_OtO-jiIowPKHlwR9hKqk-qZDG0yJpmD396Ms7ibHBKqXv14yWuan4xeC9HTm5RZS1smJD1qzjhVfCZ5z4__u582FzlvaF1CsJ7Ks2a9iAlzIQufkDzvssVt8YOffPkgf2KA4mMgPpA7yAVTIMvgPJCX7MOKPJfazsVbmAgER17Rr9YFHXmKDqdpL5lvtymCXWP-0ZyMMGW8-HueNy-Lu9-3D7PHX_fL2_njzEpKywyttRy4bgfLQI-D6_UoaktSGEF1Cns7dhTYYDvGJWil2t5VISo3dK0dxHmzPHBdhI3ZJv8G6cNE8OarENPKQKqeJzQgNKODkFJJKZ0SWg-ag2ypEpYi45V1eWDVR7zv6jeZTdylUO0brnTLhdS9qKrrg2oFFerDGEsCW7fDN29jwNHX-lzts-Fdv8deHQZsijknHL9tMmr2SZp_SYpPkcKQJg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Das, Jayshree</creator><creator>Mahato, Susanta</creator><creator>Joshi, Pawan Kumar</creator><creator>Liou, Yuei-An</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8100-5529</orcidid><orcidid>https://orcid.org/0000-0002-6307-0167</orcidid></search><sort><creationdate>20230301</creationdate><title>Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches</title><author>Das, Jayshree ; Mahato, Susanta ; Joshi, Pawan Kumar ; Liou, Yuei-An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-eccc2a285bc1a8fbd98f3c4040afa767e9cf60a1bc6124a87759da8fe7db65cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic hierarchy process</topic><topic>Biophysics</topic><topic>Bivariate analysis</topic><topic>Deciduous forests</topic><topic>Ecological balance</topic><topic>Ecology</topic><topic>Economic models</topic><topic>Emergency communications systems</topic><topic>Forest &amp; brush fires</topic><topic>forest fire susceptibility</topic><topic>Forest fires</topic><topic>Geographic information systems</topic><topic>Geospatial data</topic><topic>Impact analysis</topic><topic>India</topic><topic>Low temperature</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Mixed forests</topic><topic>Modelling</topic><topic>Precipitation</topic><topic>prediction</topic><topic>Prescribed fire</topic><topic>Remote sensing</topic><topic>Risk factors</topic><topic>Risk reduction</topic><topic>Solar radiation</topic><topic>spatial mapping</topic><topic>Spectroradiometers</topic><topic>Statistical analysis</topic><topic>statistical modelling</topic><topic>Susceptibility</topic><topic>Topography</topic><topic>validation</topic><topic>Variables</topic><topic>Zonation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Jayshree</creatorcontrib><creatorcontrib>Mahato, Susanta</creatorcontrib><creatorcontrib>Joshi, Pawan Kumar</creatorcontrib><creatorcontrib>Liou, Yuei-An</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Jayshree</au><au>Mahato, Susanta</au><au>Joshi, Pawan Kumar</au><au>Liou, Yuei-An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>5</issue><spage>1340</spage><pages>1340-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Recurring forest fires disturb ecological balance, impact socio-economic harmony, and raise global concern. This study implements multiple statistical and weighted modelling approaches to identify forest fire susceptibility zones in Eastern India. Six models, namely, Frequency Ratio (FR), Certainty Factor (CF), Natural Risk Factor (NRF), Bivariate statistical (Wi and Wf), Analytical Hierarchy Process (AHP), and Logistic Regression (LR) were used in the study. Forest fire inventory (2001 to 2018) mapping was done using forest fire points captured by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. Fire responsible components, namely, topography (which has four variables), climate (5), biophysics (8) and disturbance (4) were used as inputs to the modelling approaches. Multicollinearity analysis was carried out to examine the association and remove the highly-correlated variables before performing the modeling. Validation of model prediction levels was done using Area Under the Receiver Operating Characteristic Curve (ROC curve-AUC) value. The results reveal that the areas with west and southwest orientations, and moderate slope demarcate higher susceptibility to forest fire. High precipitation areas with lower temperature but ample solar radiation increase their susceptibility to forest fire. Mixed deciduous forest type with ample solar radiation, higher NDVI, lower NDWI and lower TWI values exhibits higher susceptibility. Model validation shows that LR (with AUC = 0.809) outperforms other models used in the study. To minimize the risk of fire and frame with proper management plans for the study area, susceptibility mapping using satellite imageries, GIS technique, and modelling approaches is highly recommended.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15051340</doi><orcidid>https://orcid.org/0000-0002-8100-5529</orcidid><orcidid>https://orcid.org/0000-0002-6307-0167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-03, Vol.15 (5), p.1340
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_a3810b3447444d7388b82a45073c0e12
source Publicly Available Content (ProQuest)
subjects Analytic hierarchy process
Biophysics
Bivariate analysis
Deciduous forests
Ecological balance
Ecology
Economic models
Emergency communications systems
Forest & brush fires
forest fire susceptibility
Forest fires
Geographic information systems
Geospatial data
Impact analysis
India
Low temperature
Mapping
Mathematical models
Mixed forests
Modelling
Precipitation
prediction
Prescribed fire
Remote sensing
Risk factors
Risk reduction
Solar radiation
spatial mapping
Spectroradiometers
Statistical analysis
statistical modelling
Susceptibility
Topography
validation
Variables
Zonation
title Forest Fire Susceptibility Zonation in Eastern India Using Statistical and Weighted Modelling Approaches
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forest%20Fire%20Susceptibility%20Zonation%20in%20Eastern%20India%20Using%20Statistical%20and%20Weighted%20Modelling%20Approaches&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Das,%20Jayshree&rft.date=2023-03-01&rft.volume=15&rft.issue=5&rft.spage=1340&rft.pages=1340-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15051340&rft_dat=%3Cgale_doaj_%3EA750512692%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-eccc2a285bc1a8fbd98f3c4040afa767e9cf60a1bc6124a87759da8fe7db65cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785234893&rft_id=info:pmid/&rft_galeid=A750512692&rfr_iscdi=true